3D Bioprinting to Cure Macular Degeneration

Scientists used patient stem cells and 3D bioprinting to produce eye tissue that will advance understanding of the mechanisms of blinding diseases. The research team from the National Eye Institute (NEI), part of the National Institutes of Health, printed a combination of cells that form the outer blood-retina barrier—eye tissue that supports the retina’s light-sensing photoreceptors.

The outer blood-retina barrier is the interface of the retina and the choroid, including Bruch’s membrane and the choriocapillaris

The technique provides a theoretically unlimited supply of patient-derived tissue to study degenerative retinal diseases such as age-related macular degeneration (AMD).

You must be logged in to view this content.

Smart Contact Lens to Treat Glaucoma

A flexible contact lens that senses eye pressure and releases a drug on-demand could help treat glaucoma, the second leading global cause of blindness worldwide. The compact wireless device, which has been developed by a team of Chinese researchers and tested in pig and rabbit eyes so far, appears to detect and reduce rising eye pressure, one of the usual causes of glaucoma.

Glaucoma is an umbrella term for a group of eye diseases where damage to the optic nerve, which relays visual information to the brain, causes irreversible vision loss and blindness in millions of people worldwide. Where this new research makes ground is in developing a device capable of detecting changes in eye pressure and delivering therapeutic drugs as needed. Recent efforts to develop smart contact lenses as wearable devices for treating eye conditions have either focused on sensing pressure changes in the eye or delivering a drug – but not both – and glaucoma treatment usually involves eye drops, laser therapy, or surgery to reduce eye pressure. While it sounds exciting, keep in mind that as scientists continue experimenting with all sorts of nifty devices for treating eye diseases, early detection of glaucoma and timely treatment remains vital.

Once detected, therapy for glaucoma can arrest or slow its deterioration in the majority of cases,” Jaimie Steinmetz, a research scientist at the Washington-based Institute for Health Metrics and Evaluation, and collaborators wrote in 2020 when analyzing the global burden of eye diseases, including glaucoma. But glaucoma is typically hard to catch because peripheral vision is the first to go, and devices used to diagnose the condition only provide snapshot measurements of intraocular pressure, which fluctuates with activity and sleep-wake cycles.

Hence the importance of improving systems of surveillance, highlighting risk among family members of cases, and effectiveness of care once treatment is initiated,” Steinmetz and co-authors stressThat said, contact lenses which sit snug against the eye hold great appeal for delivering therapies for eye conditions. But incorporating electrical circuits and sensors into small, flexible, curved, and ultra-thin contact lenses presents a serious engineering challenge. For something like this to work, it needs to be sensitive enough to detect pressure changes and release precise amounts of drug on demand – all without blocking vision and irritating the eye. “It is highly challenging to install an intricate theranostic system composited by multi-modules on a contact lens,” electrical engineer Cheng Yang of Sun Yat-Sen University and colleagues write in their paper.