Quantum Micro-Nano Satellite Launched by China

A Chinese micro-nano quantum satellite has entered its planned orbit and is now operational, the University of Science and Technology of China (USTC), one of its developers, said. It was launched atop a Lijian-1 carrier rocket from the Jiuquan Satellite Launch Center in northwest China.

The low-orbit satellite was designed to conduct real-time quantum key distribution experiments between the satellite and ground station and to carry out technical verification.

The new micro-nano satellite’s weight is about one-sixth the weight of the world’s first quantum satellite, the Chinese satellite Micius, which weighs more than 600 kilograms, according to the USTC. The university said that, based on the quantum technology first seen in Micius, it is clear that more low-cost quantum satellites are needed to realize an efficient, practical and global quantum communication network that can meet the increasing user demand.

The new satellite was jointly developed by Chinese universities and institutions such as the USTC, the Chinese Academy of Sciences and the Jinan Institute of Quantum Technology. Its launch and in-orbit operations are expected to aid the country’s quantum communication development and promote the improvement of national information security.

https://news.cgtn.com/

Mimicking Polar Bear To Design An Heat Insulator

For polar bears, the insulation provided by their fat, skin, and fur is a matter of survival in the frigid Arctic. For engineers, polar bear hair is a dream template for synthetic materials that might lock in heat just as well as the natural version. Now, materials scientists in China have developed such an insulator, reproducing the structure of individual polar bear hairs while scaling toward a material composed of many hairs for real-world applications in the architecture and aerospace sectors.

Polar bear hair has been evolutionarily optimized to help prevent heat loss in cold and humid conditions, which makes it an excellent model for a synthetic heat insulator,” says co-senior author Shu-Hong Yu, a professor of chemistry at the University of Science and Technology of China (USTC). “By making tube aerogel out of carbon tubes, we can design an analogous elastic and lightweight material that traps heat without degrading noticeably over its lifetime.”

Unlike the hairs of humans or other mammals, polar bear hairs are hollow. Zoomed in under a microscope, each one has a long, cylindrical core punched straight through its center. The shapes and spacing of these cavities have long been known to be responsible for their distinctive white coats. But they also are the source of remarkable heat-holding capacity, water resistance, and stretchiness, all desirable properties to imitate in a thermal insulator.

The hollow centers limit the movement of heat and also make the individual hairs lightweight, which is one of the most outstanding advantages in materials science,” says Jian-Wei Liu, an associate professor at USTC. To emulate this structure and scale it to a practical size, the research team—additionally co-led by Yong Ni, a mechanical engineering professor at USTCmanufactured millions of hollowed-out carbon tubes, each equivalent to a single strand of hair, and wound them into a spaghetti-like aerogel block.

The findings appeared in the journal Chem.

Source: https://en.ustc.edu.cn/