‘Drug Factory’ Implants Could Eliminate Cancer

Rice University bioengineers have shown they can eradicate advanced-stage ovarian and colorectal cancer in mice in as little as six days with a treatment that could be ready for human clinical trials later this year. The researchers used implantabledrug factories” the size of a pinhead to deliver continuous, high doses of interleukin-2, a natural compound that activates white blood cells to fight cancer. The drug-producing beads can be implanted with minimally invasive surgery. Each contains cells engineered to produce interleukin-2 that are encased in a protective shell.

The treatment and animal test results are described online today in a Science Advances study co-authored by Omid VeisehAmanda Nash and colleagues from Rice, the University of Texas MD Anderson Cancer Center, the University of Virginia and others.

Veiseh, an assistant professor of bioengineering whose lab produced the treatment, said human clinical trials could begin as soon as this fall because one of his team’s key design criteria was helping cancer patients as quickly as possible. The team chose only components that had previously proven safe for use in humans, and it has demonstrated the safety of the new treatment in multiple tests.

Rice University bioengineers Amanda Nash (left) and Omid Veiseh with vials of bead-like “drug factories” they created to treat cancer. The beads are designed to continuously produce natural compounds that program the immune system to attack tumors. 

We just administer once, but the drug factories keep making the dose every day, where it’s needed until the cancer is eliminated,” Veiseh said. “Once we determined the correct dose — how many factories we needed — we were able to eradicate tumors in 100% of animals with ovarian cancer and in seven of eight animals with colorectal cancer.”

In the newly published study, researchers placed drug-producing beads beside tumors and within the peritoneum, a sac-like lining that supports intestines, ovaries and other abdominal organs. Placement within this cavity concentrated interleukin-2 within tumors and limited exposure elsewhere. “A major challenge in the field of immunotherapy is to increase tumor inflammation and anti-tumor immunity while avoiding systemic side effects of cytokines and other pro-inflammatory drugs,” said study co-author Dr. Amir Jazaeri, professor of gynecologic oncology and reproductive medicine at MD Anderson. “In this study, we demonstrated that the ‘drug factories’ allow regulatable local administration of interleukin-2 and eradication of tumor in several mouse models, which is very exciting. This provides a strong rationale for clinical testing.

Source: https://news.rice.edu/

Brain Surgery Without a Scalpel

The School of Medicine from the University of Virginia (UVA) researchers have developed a noninvasive way to remove faulty brain circuits that could allow doctors to treat debilitating neurological diseases without the need for conventional brain surgery. The UVA team, together with colleagues at Stanford University, indicate that the approach, if successfully translated to the operating room, could revolutionize the treatment of some of the most challenging and complex neurological diseases, including epilepsy, movement disorders and more. The approach uses low-intensity focused ultrasound waves combined with microbubbles to briefly penetrate the brain’s natural defenses and allow the targeted delivery of a neurotoxin. This neurotoxin kills the culprit brain cells while sparing other healthy cells and preserving the surrounding brain architecture.

A new alternative to brain surgery developed at UVA can wipe out out problematic neurons, a type of brain cell, without causing collateral damage.

This novel surgical strategy has the potential to supplant existing neurosurgical procedures used for the treatment of neurological disorders that don’t respond to medication,” said researcher Kevin S. Lee, PhD, of UVA’s Departments of Neuroscience and Neurosurgery and the Center for Brain Immunology and Glia (BIG). “This unique approach eliminates the diseased brain cells, spares adjacent healthy cells and achieves these outcomes without even having to cut into the scalp.”

The new approach is called PING, and it has already demonstrated exciting potential in laboratory studies. For instance, one of the promising applications for PING could be for the surgical treatment of epilepsies that do not respond to medication. Approximately a third of patients with epilepsy do not respond to anti-seizure drugs, and surgery can reduce or eliminate seizures for some of them. Lee and his team, along with their collaborators at Stanford, have shown that PING can reduce or eliminate seizures in two research models of epilepsy. The findings raise the possibility of treating epilepsy in a carefully-targeted and noninvasive manner without the need for traditional brain surgery.

Another important potential advantage of PING is that it could encourage the surgical treatment of appropriate patients with epilepsy who are reluctant to undergo conventional invasive or ablative surgery. In a scientific paper newly published in the Journal of Neurosurgery, Lee and his collaborators detail the ability of PING to focally eliminate neurons in a brain region, while sparing non-target cells in the same area. In contrast, currently available surgical approaches damage all cells in a treated brain region.

A key advantage of the approach is its incredible precision. PING harnesses the power of magnetic-resonance imaging (MRI) to let scientists peer inside the skull so that they can precisely guide sound waves to open the body’s natural blood-brain barrier exactly where needed. This barrier is designed to keep harmful cells and molecules out of the brain, but it also prevents the delivery of potentially beneficial treatments.

The UVA group’s new paper concludes that PING allows the delivery of a highly targeted neurotoxin, cleanly wiping out problematic neurons, a type of brain cell, without causing collateral damage.

Source: https://newsroom.uvahealth.com/