Bionic Eye Soon Available

A bionic eye being developed by a team of biomedical researchers at the University of Sydney and UNSW has shown to be safe and stable for long-term implantation in a three-month study, paving the way towards human trials.

The Phoenix99 Bionic Eye is an implantable system, designed to restore a form of vision to patients living with severe vision impairment and blindness caused by degenerative diseases, such as retinitis pigmentosa. The device has two main components which need to be implanted: a stimulator attached to the eye and a communication module positioned under the skin behind the ear.

Publishing in Biomaterials, the researchers used a sheep model to observe how the body responds and heals when implanted with the device, with the results allowing for further refinement of the surgical procedure. The biomedical research team is now confident the device could be trialed in human patients.

The Phoenix99 Bionic Eye works by stimulating the retina—a thin stack of neurones lining the back of the eye. In healthy eyes, the cells in one of the layers turn incoming light into electrical messages which are sent to the brain. In some retinal diseases, the cells responsible for this crucial conversion degenerate, causing vision impairment. The system bypasses these malfunctioning cells by stimulating the remaining cells directly, effectively tricking the brain into believing that light was sensed.

Importantly, we found the device has a very low impact on the neurons required to ‘trick’ the brain. There were no unexpected reactions from the tissue around the device and we expect it could safely remain in place for many years,” said Mr Samuel Eggenberger, a biomedical engineer who is completing his doctorate with Head of School of Biomedical Engineering Professor Gregg Suaning.

Our team is thrilled by this extraordinary result, which gives us confidence to push on towards human trials of the device. We hope that through this technology, people living with profound vision loss from degenerative retinal disorders may be able to regain a useful sense of vision,” added Mr Eggenberger.



How to Program DNA Robots

Scientists have worked out how to best get DNA to communicate with membranes in our body, paving the way for the creation of ‘mini biological computers’ in droplets that have potential uses in biosensing and mRNA vaccinesUNSW’s Dr Matthew Baker and the University of Sydney’s Dr Shelley Wickham co-led the study, published recently in Nucleic Acids Research.

It discovered the best way to design and build DNA ‘nanostructures’ to effectively manipulate synthetic liposomes tiny bubbles which have traditionally been used to deliver drugs for cancer and other diseases. By modifying the shape, porosity and reactivity of liposomes, there are far greater applications, such as building small molecular systems that sense their environment and respond to a signal to release a cargo, such as a drug molecule when it nears its target.

Lead author Dr Matt Baker from UNSW’s School of Biotechnology and Biomolecular Sciences says the study discovered how to buildlittle blocks” out of DNA and worked out how best to label these blocks with cholesterol to get them to stick to lipids, the main constituents of plant and animal cells.

The study discovered the best way to design and build DNA ‘nanostructures’ to effectively manipulate synthetic liposomes (pictured) – tiny bubbles which have traditionally been used to deliver drugs for cancer and other diseases

One major application of our study is biosensing: you could stick some droplets in a person or patient, as it moves through the body it records local environment, processes this and delivers a result so you can ‘read out’ the local environment,” Dr Baker says.

Liposome nanotechnology has shot into prominence with the use of liposomes alongside RNA vaccines such as the Pfizer and Moderna COVID-19 vaccines. “This work shows new ways to corral liposomes into place and then pop them open at just the right time,” Dr Baker says. “What is better is because they are built from the bottom-up out of individual parts we design, we can easily bolt in and out different components to change the way they work.”