New Superconducting Material For Levitating High-Speed Train or to Achieve Nuclear Fusion

In a historic achievement, University of Rochester researchers have created a superconducting material at both a temperature and pressure low enough for practical applications.

With this material, the dawn of ambient superconductivity and applied technologies has arrived,” according to a team led by Ranga Dias, an assistant professor of mechanical engineering and of physics. In a paper in Nature, the researchers describe a nitrogen-doped lutetium hydride (NDLH) that exhibits superconductivity at 69 degrees Fahrenheit (26 degrees Celsius) and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Although 145,000 psi might still seem extraordinarily high (pressure at sea level is about 15 psi), strain engineering techniques routinely used in chip manufacturing, for example, incorporate materials held together by internal chemical pressures that are even higher.

Scientists have been pursuing this breakthrough in condensed matter physics for more than a century. Superconducting materials have two key properties: electrical resistance vanishes, and the magnetic fields that are expelled pass around the superconducting material. Such materials could enable:

  • Power grids that transmit electricity without the loss of up to 200 million megawatt hours (MWh) of the energy that now occurs due to resistance in the wires
  • Frictionless, levitating high-speed trains
  • More affordable medical imaging and scanning techniques such as MRI and magnetocardiography
  • Faster, more efficient electronics for digital logic and memory device technology
  • Tokamak machines that use magnetic fields to confine plasmas to achieve fusion as a source of unlimited power

Previously, the Dias team reported creating two materialscarbonaceous sulfur hydride and yttrium superhydride—that are superconducting at 58 degrees Fahrenheit (14,4 degrees Celsius) /39 million psi and 12 degrees Fahreneheit/26 million psi respectively, in papers in Nature and Physical Review Letters.

Source: https://www.rochester.edu/

How to Boost DNA Repair in Aging Cells

Scientists have long wondered why cells lose their ability to repair themselves as they age. New research by scientists has uncovered two intriguing cluesDNA strands in human cells routinely break and repair themselves, Seluanov and Gorbunova from University of Rochester explained, but as cells age, the system for repair becomes less efficient and flaws in the process lead to a decline in the functionality of tissue and an increase in the incidence of tumors. Their team wanted to determine why this occurs, and establish whether the process could be slowed, or even reversed.
Seluanov and his colleagues found that the decline in a cell's ability to repair DNA during aging coincided with a global reduction in the levels of proteins involved in the repair process. Seluanov's group tried to reverse the age-related decline in DNA repair efficiency by restoring the proteins to their original levels and found only one protein, SIRT6, did the trick. Gorbunova said the results build on a paper by Haim Cohen, a staff scientist investigating aging at Bar-Ilan University in Israel, and others published in the journal Nature this summer.

"That work showed that overexpressing the SIRT6 protein extended the lifespans of mice," said Gorbunova, "Our research looked at DNA repair and found a reason for the increased longevity, and that is SIRT6's role in promoting more efficient DNA repair."

The next step for Seluanov and his team is to study the factors that regulate SIRT6, in an effort to learn more about the early stages of the DNA repair process. Seluanov said that multiple groups are trying to develop drugs that activate SIRT6, and he hopes that this research will one day lead to therapies that help extend a person's lifespan and treat cancer.

You must be logged in to view this content.

Lasers Could Cut Lifespan of Nuclear Waste from a Million Years to 30 Minutes

Whatever one thinks of nuclear energy, the process results in tons of radioactive, toxic waste no one quite knows what to do with. As a result, it’s tucked away as safely as possible in underground storage areas where it’s meant to remain a long, long time: The worst of it, uranium 235 and plutonium 239, have a half life of 24,000 years. That’s the reason eyebrows were raised in Europe — where more countries depend on nuclear energy than anywhere else — when physicist Gérard Mourou mentioned in his wide-ranging Nobel acceptance speech that lasers could cut the lifespan of nuclear waste from “a million years to 30 minutes,” as he put it in a followup interview with The Conversation.
Who is Gérard Mourou? Mourou was the co-recipient of his Nobel with Donna Strickland for their development of Chirped Pulse Amplification (CPA) at the University of Rochester. In his speech, he referred to his “passion for extreme light.”

CPA produces high-intensity, super-short optical pulses that pack a tremendous amount of power. Mourou’s and Strickland’s goal was to develop a means of making highly accurate cuts useful in medical and industrial settings. It turns out CPA has another benefit, too, that’s just as important. Its attosecond pulses are so quick that they shine a light on otherwise non-observable, ultra-fast events such as those inside individual atoms and in chemical reactions. This capability is what Mourou hopes give CPA a chance of neutralizing nuclear waste, and he’s actively working out a way to make this happen in conjunction with Toshiki Tajima of UC Irvine.

“Take the nucleus of an atom. It is made up of protons and neutrons. If we add or take away a neutron, it changes absolutely everything. It is no longer the same atom, and its properties will completely change. The lifespan of nuclear waste is fundamentally changed, and we could cut this from a million years to 30 minutes!,”  explains Mourou.

We are already able to irradiate large quantities of material in one go with a high-power laser, so the technique is perfectly applicable and, in theory, nothing prevents us from scaling it up to an industrial level. This is the project that I am launching in partnership with the Alternative Energies and Atomic Energy Commission, or CEA, in France. We think that in 10 or 15 years’ time we will have something we can demonstrate. This is what really allows me to dream, thinking of all the future applications of our invention.”

While 15 years may seem a long time, when you’re dealing with the half-life of nuclear waste, it’s a blink of an eye.

Source: https://www.freethink.com/

Next Generation of AR/VR Headsets (Quantglasses)

“Image” is everything in the $20 billion market for AR/VR glasses (Quantglasses). Consumers are looking for glasses that are compact and easy to wear, delivering high-quality imagery with socially acceptable optics that don’t look like “bug eyes.”

University of Rochester researchers at the Institute of Optics have come up with a novel technology to deliver those attributes with maximum effect. In a paper in Science Advances, they describe imprinting freeform optics with a nanophotonic optical element called “a metasurface.”

The metasurface is a veritable forest of tiny, silver, nanoscale structures on a thin metallic film that conforms, in this advance, to the freeform shape of the optics—realizing a new optical component the researchers call a metaform. The metaform is able to defy the conventional laws of reflection, gathering the visible light rays entering an AR/VR eyepiece from all directions, and redirecting them directly into the human eye.

 

Freeform optics is an emerging technology that uses lenses and mirrors with surfaces that lack an axis of symmetry within or outside the optics diameter to create optical devices that are lighter, more compact, and more effective than ever before.

Nick Vamivakas, a professor of quantum optics and quantum physics, likened the nanoscale structures to small-scale radio antennas.  “When we actuate the device and illuminate it with the right wavelength, all of these antennas start oscillating, radiating a new light that delivers the image we want downstream.

Metasurfaces are also called ‘flat optics’ so writing metasurfaces on freeform optics is creating an entirely new type of optical component,” says Jannick Rolland, the Brian J. Thompson Professor of Optical Engineering and director of the Center for Freeform Optics.

Adds Rolland, “This kind of optical component can be applied to any mirrors or lenses, so we are already finding applications in other types of components” such as sensors and mobile cameras.

The first demonstration required many years to complete.

The goal is to direct the visible light entering the AR/VR glasses to the eye. The new device uses a freespace optical combiner to help do that. However, when the combiner is part of freeform optics that curve around the head to conform to an eyeglass format, not all of the light is directed to the eye. Freeform optics alone cannot solve this specific challenge. That’s why the researchers had to leverage a metasurface to build a new optical component.

Integrating these two technologies, freeform and metasurfaces, understanding how both of them interact with light, and leveraging that to get a good image was a major challenge,” says lead author Daniel Nikolov, an optical engineer in Rolland’s research group.

Source: https://www.rochester.edu/

How To Turn Seawater Into Fuel

For the first time, Rochester chemical engineers have demonstrated a ‘potassium-promotedcatalyst’s potential for use on an industrial scale. Now, the Navy’s quest to power its ships by converting seawater into fuel is nearer fruition.

University of Rochester chemical engineers—in collaboration with researchers at the Naval Research Laboratory, the University of Pittsburgh, and OxEon Energy—have demonstrated that a potassium-promoted molybdenum carbide catalyst efficiently and reliably converts carbon dioxide to carbon monoxide, a critical step in turning seawater into fuel.

Gulf of Aden, April 27, 2011- The Military Sealift Command fleet replenishment oiler USNS Joshua Humphreys (T-AO 188), left, refuels the amphibious assault ship USS Boxer (LHD 4) during a replenishment at sea. Boxer is underway supporting maritime security operations and theater security cooperation efforts in the U.S. 5th Fleet area of responsibility.

This is the first demonstration that this type of molybdenum carbide catalyst can be used on an industrial scale,” says Marc Porosoff, assistant professor in the Department of Chemical Engineering at Rochester. In a paper in the journal Energy & Environmental Science, the researchers describe an exhaustive series of experiments they conducted at molecular, laboratory, and pilot scales to document the catalyst’s suitability for scale-up.

If navy ships could create their own fuel from the seawater they travel through, they could remain in continuous operation. Other than a few nuclear-powered aircraft carriers and submarines, most navy ships must periodically align themselves alongside tanker ships to replenish their fuel oil, which can be difficult in rough weather.

In 2014, a Naval Research Laboratory team led by Heather Willauer announced it had used a catalytic converter to extract carbon dioxide and hydrogen from seawater and then converted the gases into liquid hydrocarbons at a 92 percent efficiency rate.

Since then, the focus has been on increasing the efficiency of the process and scaling it up to produce fuel in sufficient quantities.
The carbon dioxide extracted from seawater is extremely difficult to convert directly into liquid hydrocarbons with existing methods. So, it is necessary to first convert carbon dioxide into carbon monoxide via the reverse water-gas shift (RWGS) reaction. The carbon monoxide can then be converted into liquid hydrocarbons via Fischer-Tropsch synthesis.
Typically, catalysts for RWGS contain expensive precious metals and deactivate rapidly under reaction conditions. However, the potassium-modified molybdenum carbide catalyst is synthesized from low-cost components and did not show any signs of deactivation during continuous operation of the 10-day pilot-scale study. That’s why this demonstration of the molybdenum carbide catalyst is important.

Source: https://www.rochester.edu/

How To Purify Water Without Wasting Energy

Amid the coronavirus pandemic, people in developed countries are assured of ample supplies of clean water to wash their hands as often as needed to protect themselves from the virus. And yet, nearly a third of the world’s population is not even assured of clean water for drinking. University of Rochester researchers have now found a way to address this problem by using sunlight—a resource that everyone can access—to evaporate and purify contaminated water with greater than 100 percent efficiency.

How is this possible? In a paper in Nature Sustainability, researchers in the laboratory of Chunlei Guo, professor of optics, demonstrate how a burst of femtosecond laser pulses etch the surface of a normal sheet of aluminum into a superwicking (water-attracting), super energyabsorbing material. Using sunlight to boil has long been recognized as a way to eliminate microbial pathogens and reduce deaths from diarrheal infections. But boiling water does not eliminate heavy metals and other contaminants. Experiments by the lab show that their new method reduces the presence of all common contaminants, such as detergent, dyes, urine, heavy metals, and glycerin, to safe levels for drinking.

Solar-based water purification can greatly reduce contaminants because nearly all the impurities are left behind when the evaporating water becomes gaseous and then condenses and gets collected. The most common method of solar-based water evaporation is volume heating, in which a large volume of water is heated but only the top layer can evaporate. This is obviously inefficient, Guo says, because only a small fraction of the heating energy gets used. A more efficient approach, called interfacial heating, places floating, multilayered absorbing and wicking materials on top of the water, so that only water near the surface needs to be heated. But the available materials all have to float horizontally on top of the water and cannot face the sun directly. Furthermore, the available wicking materials become quickly clogged with contaminants left behind after evaporation, requiring frequent replacement of the materials.

The panel developed by the Guo lab avoids these inefficiencies by pulling a thin layer of water out of the reservoir and directly onto the solar absorber surface for heating and evaporation. “Moreover, because we use an open-grooved surface, it is very easy to clean by simply spraying it,” Guo says.

The biggest advantage,” he adds, “is that the angle of the panels can be continuously adjusted to directly face the sun as it rises and then moves across the sky before setting” —maximizing energy absorption. “There was simply nothing else resembling what we can do here,” Guo says.

Source: https://www.rochester.edu/

How To Etch A ‘Perfect’ Solar Energy Absorber

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with the Department of Physics and Astronomy and the Material Sciences Program, describes using powerful femto-second laser pulses to etch metal surfaces with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.

A regular metal surface is shiny and highly reflective. Years ago, the Guo lab developed a black metal technology that turned shiny metals pitch black.

 

But to make a perfect solar absorber,” Guo says, “We need more than a black metal and the result is this selective absorber.”

This surface not only enhances the energy absorption from sunlight, but also reduces heat dissipation at other wavelengths, in effect, “making a perfect metallic solar absorber for the first time,” Guo says. “We also demonstrate solar energy harnessing with a thermal electric generator device.

This will be useful for any thermal solar energy absorber or harvesting device,” particularly in  places with abundant sunlight, he adds.

The researchers experimented with aluminum, copper, steel, and tungsten, and found that tungsten, commonly used as a thermal solar absorber, had the highest solar absorption efficiency when treated with the new nanoscale structures. This improved the efficiency of thermal electrical generation by 130 percent compared to untreated tungsten.

Co-authors include Sohail Jalil, Bo Lai, Mohamed Elkabbash, Jihua Zhang, Erik M. Garcell, and Subhash Singh of the Guo lab.

Source: https://www.rochester.edu/