Can Humans Become Immortal?

Long life, de-aging, and immortality are some of the concepts that humans keep fiddling with. But, so far, there have been no answers that could unlock the secret of immortality, if it exists. Scientists have now turned for answers to the immortal jellyfish, a creature capable of repeatedly reverting into a younger state.

Spanish researchers have managed to decipher the genome of the immortal jellyfishTurritopsis dohrnii, and have defined various genomic keys that contribute to extending its longevity to the point of avoiding its death. Led by Dr. Carlos López-Otín of the University of Oviedo, the team mapped the genetic sequence of the unique jellyfish in hopes of unearthing the secret to their unique longevity and finding new clues to human aging. The study has been published in the Proceedings of the National Academy of Sciences. They sequenced Turritopsis dohrnii, together with that of its sister Turritopsis rubra to identify genes that are amplified or have different variant characteristics between the two.Turritopsis rubra is a close genetic cousin that lacks the ability to rejuvenate after sexual reproduction. They unraveled that T. dohrnii has variations in its genome that may make it better at copying and repairing DNA and they appear to be better at maintaining the ends of chromosomes called telomeres. The telomere length has been shown to shorten with age in humans.

Rather than having a single key to rejuvenation and immortality, the various mechanisms found in our work would act synergistically as a whole, thus orchestrating the process to ensure the successful rejuvenation of the immortal jellyfish,” Maria Pascual-Torner, first author of the article said in a statement. ”

Like other types of jellyfish, the T. dohrnii goes through a two-part life cycle, living on the sea floor during an asexual phase, where its chief role is to stay alive during times of food scarcity. When conditions are right, jellyfish reproduce sexually. Although many types of jellyfish have some capacity to reverse aging and revert to a larval stage, most lose this ability once they reach sexual maturity, the authors wrote. Not so for T. dohrnii.

Meanwhile, Carlos López-Otín, professor of Biochemistry and Molecular Biology at the Asturian university said, “This work does not pursue the search for strategies to achieve the dreams of human immortality that some announce, but to understand the keys and limits of the fascinating cellular plasticity that allows some organisms to be able to travel back in time. From this knowledge, we hope to find better answers to the numerous diseases associated with aging that overwhelm us today“.

Source: https://www.indiatoday.in/