‘Masked’ Cancer Drug Sneaks Through Body

Many cancer treatments are notoriously savage on the body; they attack healthy cells at the same time as tumor cells, causing a plethora of side effects. Now, researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have designed a method to keep one promising cancer drug from wreaking such havoc. The team has engineered a new “masked” version of the immunotherapy drug interleukin-12 that is activated only when it reaches a tumor.

Researchers have long suspected that interleukin-12 could be a powerful cancer treatment, but it caused dangerous side effects. Now, Pritzker Molecular Engineering researchers have developed a version of the molecule not activated until it reaches a tumor, where it eradicates cancer cells.

Our research shows that this masked version of IL-12 is much safer for the body, but it possesses the same anti-tumor efficacy as the original,” said Aslan Mansurov, a postdoctoral research fellow and first author of the new paper. He carried out the IL-12 engineering work with Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering, who co-leads PME’s Immunoengineering research theme with professor Melody Swartz.

Researchers know that IL-12 potently activates lymphocytes, immune cells with the potential to destroy tumor cells. But, in the 1990s, early clinical trials of IL-12 were halted because of severe, toxic side effects in patients. The same immune activation that started a cascade of events killing cancer cells also led to severe inflammation throughout the body. IL-12, at least in its natural form, was shelved.
The research on the molecule, also known as IL-12, is described in the journal Nature Biomedical Engineering.

But Mansurov, Hubbell, Swartz, and colleagues had an idea to reinvigorate the possibility of IL-12. What if the drug could slip through the body without activating the immune system? They designed a “masked molecule with a cap covering the section of IL-12 which normally binds immune cells. The cap can be removed only by tumor-associated proteases, a set of molecular scissors found in the vicinity of tumors to help them degrade surrounding healthy tissue. When the proteases chop off the cap, the IL-12 becomes active, able to spur an immune response against the tumor.

The masked IL-12 is largely inactive everywhere in the body except at the site of the tumor, where these proteases can cleave off the mask,” explained Mansurov.

Source: https://pme.uchicago.edu/

The Drug Masitinib Effective in Treating COVID-19

A new University of Chicago study has found that the drug masitinib may be effective in treating COVID-19. The drug, which has undergone several clinical trials for human conditions but has not yet received approval to treat humans, inhibited the replication of SARS-CoV-2 in human cell cultures and in a mouse model, leading to much lower viral loads.

Researchers at UChicago’s Pritzker School of Molecular Engineering (PME), working with collaborators at Argonne National Laboratory and around the world, also found that the drug could be effective against many types of coronaviruses and picornaviruses. Because of the way it inhibits replication, it has also been shown to remain effective in the face of COVID-19 variants.

Inhibitors of the main protease of SARS-CoV-2, like masitinib, could be a new potential way to treat COVID patients, especially in early stages of the disease,” said Prof. Savas Tay, who led the research. “COVID-19 will likely be with us for many years, and novel coronaviruses will continue to arise. Finding existing drugs that have antiviral properties can be an essential part of treating these diseases.”

The results were published  in Science.

Source: https://pme.uchicago.edu/