Crispr Can Edit Directly Genes Inside Human Bodies

A decade ago, biologists Jennifer Doudna and Emmanuelle Charpentier published a landmark paper describing a natural immune system found in bacteria and its potential as a tool for editing the genes of living organisms. A year later, in 2013, Feng Zhang and his colleagues at the Broad Institute of MIT and Harvard reported that they’d harnessed that systemknown as Crispr, to edit human and animal cells in the lab. The work by both teams led to an explosion of interest in using Crispr to treat genetic diseases, as well as a 2020 Nobel Prize for Doudna and Charpentier.

Many diseases arise from gene mutations, so if Crispr could just snip out or replace an abnormal gene, it could in theory correct the disease. But one of the challenges of turning test tube Crispr discoveries into cures for patients has been figuring ouhow to get the gene-editing components to the place in the body that needs treatment.

One biotech company, Crispr Therapeutics, has gotten around that issue by editing patients’ cells outside the body. Scientists there have used the tool to treat dozens of people with sickle cell anemia and beta thalassemia—two common blood disorders. In those trials, investigators extract patients’ red blood cells, edit them to correct a disease-causing mutation, then infuse them back into the body.

But this “ex vivo” approach has downsides. It’s complex to administer, expensive, and has limited uses. Most diseases occur in cells and tissues that can’t be easily taken out of the body, treated, and put back in. So the next wave of Crispr research is focused on editingin vivo”—that is, directly inside a patient’s body. Last year, Intellia Therapeutics was the first to demonstrate that this was possible for a disease called transthyretin amyloidosis. And last week, the Cambridge, Massachusetts-based biotech company showed in-the-body editing in a second disease.

Source: https://www.intelliatx.com/
AND
https://www.wired.com/

CRISPR Gene Editing Breakthrough could Treat many More Diseases

CRISPR gene editing already promises to fight diseases that were once thought unassailable, but techniques so far have required injecting the tools directly into affected cells. That’s not very practical for some conditions. However, there’s just been a breakthrough. NPR reports that researchers have published results showing that you can inject CRISPR-Cas9 into the bloodstream to make edits, opening the door to the use of gene editing for treating many common diseases.

The experimental treatment tackled a rare genetic disease, transthyretin amyloidosis. Scientists injected volunteers with CRISPR-loaded nanoparticles that were absorbed by the patients’ livers, editing a gene in the organ to disable production of a harmful protein. Levels of that protein plunged within weeks of the injection, saving patients from an illness that can rapidly destroy nerves and other tissues in their bodies.

The test involved just six people, and the research team still has to conduct long-term studies to check for possible negative effects. If this method proves viable on a large scale, though, it could be used to treat illnesses where existing CRISPR techniques aren’t practical, ranging from Alzheimer’s to heart disease.

There are some ethical considerations. Some are already wary about the potential for abusing CRISPR for ‘designer babies‘ and other less-than-altruistic purposes. Bloodstream injections would make it that much easier to perform dubious edits. If used properly, however, this new CRISPR method could avoid (or prevent) suffering that was once considered inevitable.

Source: https://www.npr.org/
AND
https://www.engadget.com/