The Two Major Obstacles To A Hydrogen Revolution

Hydrogen will play an indispensable role in a future carbon-free energy system, according to nearly everyone concerned with the matter. But scenarios showing its share in final energy in the year 2050 vary considerably. The International Renewable Energy Agency (IRENA) says 12%, the Brussels-based Hydrogen Council says 18%, while the EU’s announced target is 24%.

Whatever the final outcome may be, industry watchers now largely agree that there are two realms where costs must come down for carbon-free hydrogen to advance. The cost of renewable energy, already the object of remarkable reductions in the past decade, must continue to fall. And the cost of water electrolysis for hydrogen production, encompassing the basic hardware of green hydrogen, the electrolyser, must follow a similar path downward.

Many see both poised to happen. In fact, the two are integrally related, with operating expense and capital cost factoring into the total cost of electrolyser operation. The decline of renewable power prices is expected to continue, with accelerated deployment of renewables into grids. But capital costs must come down as well, with electrolysis equipment being manufactured more quickly and less expensively.

While the price of solar PV power has fallen approximately 90% in the past 10 years, it needs to fall still further and governments appear determined to help. For example, in March, the US Department of Energy (DOE) announced its objective that the cost of utility-scale solar power fall by more than half in 10 years, from a current cost of 4.6 cents per kilowatt-hour (kWh) to 3 cents/kWh by 2025 and 2 cents/kWh by 2030. DOE announced a host of R&D projects and seed capital for improved photovoltaics (perovskites, thin films) and Concentrated Solar Power (CSP) to achieve higher efficiencies and lower costs.

The cost of electrolysis technology has been declining as well, with design improvements for higher efficiency. Improved alkaline units are being deployed even while buyers are turning increasingly to higher efficiency proton exchange membrane (PEM) electrolysers. Meanwhile the technology is advancing for solid oxide electrolyser cells (SOEC), which promise to achieve very high efficiency from high heat input, from industrial heat sources, and potentially from nuclear reactors.

Source: https://oilprice.com/

How To Make Solar Panels More Sustainable And Cheaper

An innovative way to pattern metals has been discovered by scientists in the Department of Chemistry at the University of Warwick in UK, which could make the next generation of  solar panels more sustainable and cheaperSilver and copper are the most widely used electrical conductors in modern electronics and solar cells. However, conventional methods of patterning these metals to make the desired pattern of conducting lines are based on selectively removing metal from a film by etching using harmful chemicals or printing from costly metal inks.

Scientists from the Department of Chemistry at the University of Warwick, have developed a way of patterning these metals that is likely to prove much more sustainable and cheaper for large scale production, because there is no metal waste or use of toxic chemicals, and the fabrication method is compatible with continuous roll-to-roll processing. Dr Ross Hatton and Dr Silvia Varagnolo have discovered that silver and copper do not condense onto extremely thin films of certain highly fluorinated organic compounds when the metal is deposited by simple thermal evaporation.

Thermal evaporation is already widely used on a large scale to make the thin metal film on the inside of crisp packets, and organofluorine compounds are already common place as the basis of non-stick cooking pans. The researchers have shown that the organofluorine layer need only be 10 billionths of a metre thick to be effective, and so only tiny amounts are needed. This unconventional approach also leaves the metal surface uncontaminated, which Hatton believes will be particularly important for the next generation sensors, which often require uncontaminated patterned films of these metals as platforms onto which sensing molecules can be attached.

To help address the challenges posed by climate change, there is a need for colour tuneable, flexible and light weight solar cells that can be produced at low cost, particularly for applications where conventional rigid silicon solar cells are unsuitable such as in electric cars and semi-transparent solar cells for buildings. Solar cells based on thin films of organic, perovskite or nano-crystal semiconductors all have potential to meet this need, although they all require a low cost, flexible transparent electrode. Hatton and his team have used their method to fabricate semi-transparent organic solar cells in which the top silver electrode is patterned with millions of tiny apertures per square centimetre, which cannot be achieved by any other scalable means directly on top of an organic electronic device.

This innovation enables us to realise the dream of truly flexible, transparent electrodes matched to needs of the emerging generation of thin film solar cells, as well as having numerous other potential applications ranging from sensors to low-emissivity glass” explains Dr Hatton from the Department of Chemistry at the University of Warwick.

The work is published in the journal Materials Horizons.

Source: https://warwick.ac.uk/