Google Launches a Dermatology AI App in EU

Billions of times each year, people turn to Google’s web search box for help figuring out what’s wrong with their skin. Now, Google is preparing to launch an app that uses image recognition algorithms to provide more expert and personalized help. A brief demo at the company’s developer conference last month showed the service suggesting several possible skin conditions based on uploaded photos.

Machines have matched or outperformed expert dermatologists in studies in which algorithms and doctors scrutinize images from past patients. But there’s little evidence from clinical trials deploying such technology, and no AI image analysis tools are approved for dermatologists to use in the US, says Roxana Daneshjou, a Stanford dermatologist and researcher in machine learning and health.

Many don’t pan out in the real world setting,” she says.

Google’s new app isn’t clinically validated yet either, but the company’s AI prowess and recent buildup of its health care division make its AI dermatology app notable. Still, the skin service will start small—and far from its home turf and largest market in the US. The service is not likely to analyze American skin blemishes any time soon.

At the developer conference, Google’s chief health officer, Karen DeSalvo, said the company aims to launch what it calls a dermatology assist tool in the European Union as soon as the end of this year. A video of the app suggesting that a mark on someone’s arm could be a mole featured a caption saying it was an approved medical device in the EU. The same note added a caveat: “Not available in the US.”

Google says its skin app has been approved “CE marked as a Class I medical device in the EU,” meaning it can be sold in the bloc and other countries recognizing that standard. The company would have faced relatively few hurdles to secure that clearance, says Hugh Harvey, managing director at Hardian Health, a digital health consultancy in the UK. “You essentially fill in a form and self-certify,” he says. Google’s conference last month took place a week before tighter EU rules took effect that Harvey says require many health apps, likely including Google’s, to show that an app is effective, among other things. Preexisting apps have until 2025 to comply with the new rules.

Source: https://www.wired.com/

How To Restore Sight To The Blind

For more than a decade, researchers have been working to create artificial digital retinas that can be implanted in the eye to allow the blind to see again. Many challenges stand in the way, but researchers at Stanford University may have found the key to solving one of the most vexing: heat. The artificial retina requires a very small computer chip (nanocoputer) with many metal electrodes poking out. The electrodes first record the activity of the neurons around them to create a map of cell types. This information is then used to transmit visual data from a camera to the brain. Unfortunately, the eye produces so much data during recording that the electronics get too darn hot.

The chips required to build a high-quality artificial retina would essentially fry the human tissue they are trying to interface with,” says E.J. Chichilnisky, a professor in the Neurosurgery and Ophthalmology departments, who is on Stanford’s artificial retina team.

Members of the team, including Chichilnisky and his collaborators in Stanford’s Electrical Engineering and Computer Science departments, recently announced they have devised a way to solve that problem by significantly compressing the massive amounts of visual data that all those neurons in the eye create. They discuss their advance in a study published in the IEEE Transactions on Biomedical Circuits and Systems.

To convey visual information, neurons in the retina send electrical impulses, known as spikes, to the brain. The problem is that the digital retina needs to record and decode those spikes to understand the properties of the neurons, but that generates a lot of heat in the digitization process, even with only a few hundred electrodes used in today’s prototypes. The first true digital retina will need to have tens of thousands of such electrodes, complicating the issue further. Boris Murmann, a professor of electrical engineering on the retina project, says the team found a way to extract the same level of visual understanding using less data. By better understanding which signal samples matter and which can be ignored, the team was able to reduce the amount of data that has to be processed. It’s a bit like being at a party trying to extract a single coherent conversation amid the din of a crowded room — a few voices matter a lot, but most are noise and can be ignored.

We compress the data by being more selective, ignoring the noise and baseline samples and digitizing only the unique spikes,” Murmann says. Previously, digitization and compression were done separately, leading to a lot of extra data storage and data transfer. “Our innovation inserts compression techniques into the digitization process,” says team member Subhasish Mitra, a professor of electrical engineering and of computer science. This approach retains the most useful information and is easier to implement in hardware.

Source: https://engineering.stanford.edu/

Most Metastatic Colorectal Cancers Have Spread Before Diagnosis

Colorectal cancers often spread before the initial tumor is detected, according to a new Stanford study. Identifying patients in whom early metastasis is likely could better guide treatment decisions. Up to 80% of metastatic colorectal cancers are likely to have spread to distant locations in the body before the original tumor has exceeded the size of a poppy seed, according to a study of nearly 3,000 patients by researchers at the Stanford University School of MedicineIdentifying patients with early-stage colorectal tumors that are born to be bad may help doctors determine who should receive early treatments, such as systemic chemotherapy, to kill cancer cells lurking far from the tumor’s original location.

This finding was quite surprising,” said Christina Curtis, PhD, assistant professor of medicine and of genetics at Stanford. “In the majority of metastatic colorectal cancer patients analyzed in this study, the cancer cells had already spread and begun to grow long before the primary tumor was clinically detectable. This indicates that metastatic competence was attained very early after the birth of the cancer. This runs counter to the prevailing assumption that metastasis occurs late in advanced primary tumors and has implications for patient stratification, therapeutic targeting and earlier detection.”

Researchers and clinicians have assumed that cancers acquire the ability to metastasize through the gradual accumulation of molecular changes over time. These changes, the thinking goes, confer specific traits that eventually allow cancer cells to escape the surrounding tissue, enter the bloodstream and take up residence in new locations. In this scenario, metastasis, if it occurs, would be a relatively late event in the evolution of the primary cancer.

Curtis, who co-directs the molecular tumor board at the Stanford Cancer Institute, is the senior author of the study, which was published online June 17 in Nature Genetics. Postdoctoral scholar Zheng Hu, PhD, is the lead author.

Source: http://med.stanford.edu/