Solar Panel 10 Times More Efficient to Produce Power from Water Splitting

A new kind of solar panel, developed at the University of Michigan, has achieved 9% efficiency in converting water into hydrogen and oxygen—mimicking a crucial step in natural photosynthesis. Outdoors, it represents a major leap in the technology, nearly 10 times more efficient than solar water-splitting experiments of its kind.

But the biggest benefit is driving down the cost of sustainable hydrogen. This is enabled by shrinking the semiconductor, typically the most expensive part of the device. The team’s self-healing semiconductor withstands concentrated light equivalent to 160 suns.

Currently, humans produce hydrogen from the fossil fuel methane, using a great deal of fossil energy in the process. However, plants harvest hydrogen atoms from water using sunlight. As humanity tries to reduce its carbon emissions, hydrogen is attractive as both a standalone fuel and as a component in sustainable fuels made with recycled carbon dioxide. Likewise, it is needed for many chemical processes, producing fertilizers for instance.

In the end, we believe that artificial photosynthesis devices will be much more efficient than natural photosynthesis, which will provide a path toward carbon neutrality,” said Zetian Mi, U-M professor of electrical and computer engineering who led the study reported in Nature.

https://news.umich.edu/

Photonic Chips

Emitting light from silicon has been the ‘Holy Grail’ in the microelectronics industry for decades. Solving this puzzle would revolutionize computing, as chips will become faster than ever. Researchers from Eindhoven University of Technology  (TU-e) now succeeded: they have developed an alloy with silicon that can emit light. The team will now start creating a silicon laser to be integrated into current chips.

Every year we use and produce significantly more data. But our current technology, based on electronic chips, is reaching its ceiling. The limiting factor is heat, resulting from the resistance that the electrons experience when traveling through the copper lines connecting the many transistors on a chip. If we want to continue transferring more and more data every year, we need a new technique that does not produce heat. Bring in photonics, which uses photons (light particles) to transfer data. In contrast to electrons, photons do not experience resistance. As they have no mass or charge, they will scatter less within the material they travel through, and therefore no heat is produced. The energy consumption will therefore be reduced. Moreover, by replacing electrical communication within a chip by optical communication, the speed of on-chip and chip-to-chip communication can be increased by a factor 1000. Data centers would benefit most, with faster data transfer and less energy usage for their cooling system. But these photonic chips will also bring new applications within reach. Think of laser-based radar for self-driving cars and chemical sensors for medical diagnosis or for measuring air and food quality.

To use light in chips, you will need a light source; an integrated laser. The main semiconductor material that computer chips are made of is silicon. But bulk silicon is extremely inefficient at emitting light, and so was long thought to play no role in photonics. Thus, scientists turned to more complex semiconductors, such as gallium arsenide and indium phosphide. These are good at emitting light but are more expensive than silicon and are hard to integrate into existing silicon microchips.

To create a silicon compatible laser, scientists needed to produce a form of silicon that can emit light. That’s exactly what researchers from Eindhoven University of Technology (TU/e) now succeeded in. Together with researchers from the universities of Jena, Linz and Munich, they combined silicon and germanium in a hexagonal structure that is able to emit light. A breakthrough after 50 years of work.

Nanowires with hexagonal silicon-germanium shells

The crux is in the nature of the so-called band gap of a semiconductor,” says lead researcher Erik Bakkers from TU/e. “If an electron ‘drops’ from the conduction band to the valence band, a semiconductor emits a photon: light.” But if the conduction band and valence band are displaced with respect to each other, which is called an indirect band gap, no photons can be emitted – as is the case in silicon. “A 50-year old theory showed however that silicon, alloyed with germanium, shaped in a hexagonal structure does have a direct band gap, and therefore potentially could emit light,” explains Bakkers.

Shaping silicon in a hexagonal structure, however, is not easy. As Bakkers and his team master the technique of growing nanowires, they were able to create hexagonal silicon in 2015. They realized pure hexagonal silicon by first growing nanowires made from another material, with a hexagonal crystal structure. Then they grew a silicon-germanium shell on this template. Elham Fadaly, shared first author of the study: “We were able to do this such that the silicon atoms are built on the hexagonal template, and by this forced the silicon atoms to grow in the hexagonal structure.” But they could not yet make them to emit light, until now. Bakkers team managed to increase the quality of the hexagonal silicon-germanium shells by reducing the number of impurities and crystal defects. When exciting the nanowire with a laser, they could measure the efficiency of the new material. Alain Dijkstra, also shared first author of the study and responsible for measuring the light emission: “Our experiments showed that the material has the right structure, and that it is free of defects. It emits light very efficiently.”

The findings have been published in the journal Nature.

Source: https://www.tue.nl/

Artificial Synapses Made from Nanowires

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to both save and process information, as well as receive numerous signals in parallel. The resistive switching cell made from oxide crystal nanowires is thus proving to be the ideal candidate for use in building bioinspired “neuromorphic” processors, able to take over the diverse functions of biological synapses and neurons.

Image captured by an electron microscope of a single nanowire memristor (highlighted in colour to distinguish it from other nanowires in the background image). Blue: silver electrode, orange: nanowire, yellow: platinum electrode. Blue bubbles are dispersed over the nanowire. They are made up of silver ions and form a bridge between the electrodes which increases the resistance.

Computers have learned a lot in recent years. Thanks to rapid progress in artificial intelligence they are now able to drive cars, translate texts, defeat world champions at chess, and much more besides. In doing so, one of the greatest challenges lies in the attempt to artificially reproduce the signal processing in the human brain. In neural networks, data are stored and processed to a high degree in parallel. Traditional computers on the other hand rapidly work through tasks in succession and clearly distinguish between the storing and processing of information. As a rule, neural networks can only be simulated in a very cumbersome and inefficient way using conventional hardware.

Systems with neuromorphic chips that imitate the way the human brain works offer significant advantages. Experts in the field describe this type of bioinspired computer as being able to work in a decentralised way, having at its disposal a multitude of processors, which, like neurons in the brain, are connected to each other by networks. If a processor breaks down, another can take over its function. What is more, just like in the brain, where practice leads to improved signal transfer, a bioinspired processor should have the capacity to learn.

With today’s semiconductor technology, these functions are to some extent already achievable. These systems are however suitable for particular applications and require a lot of space and energy,” says Dr. Ilia Valov from Forschungszentrum Jülich. “Our nanowire devices made from zinc oxide crystals can inherently process and even store information, as well as being extremely small and energy efficient,” explains the researcher from Jülich’s Peter Grünberg Institute.

Source: http://www.fz-juelich.de/

New Solar Cells Could Harvest 85% of Visible Light

Scientists have developed a photoelectrode that can harvest 85 percent of visible light in a 30 nanometers-thin semiconductor layer between gold layers, converting light energy 11 times more efficiently than previous methods. In the pursuit of realizing a sustainable society, there is an ever-increasing demand to develop revolutionary solar cells or artificial photosynthesis systems that utilize visible light energy from the sun while using as few materials as possible. The research team, led by Professor Hiroaki Misawa of the Research Institute for Electronic Science at Hokkaido University (Japan), has been aiming to develop a photoelectrode that can harvest visible light across a wide spectral range by using gold nanoparticles loaded on a semiconductor. But merely applying a layer of gold nanoparticles did not lead to a sufficient amount of light absorption, because they took in light with only a narrow spectral range.

In the study published in Nature Nanotechnology, the research team sandwiched a semiconductor, a 30-nanometer titanium dioxide thin-film, between a 100-nanometer gold film and gold nanoparticles to enhance light absorption. When the system is irradiated by light from the gold nanoparticle side, the gold film worked as a mirror, trapping the light in a cavity between two gold layers and helping the nanoparticles absorb more light. To their surprise, more than 85 percent of all visible light was harvested by the photoelectrode, which was far more efficient than previous methods. Gold nanoparticles are known to exhibit a phenomenon called localized plasmon resonance which absorbs a certain wavelength of light.

“Our photoelectrode successfully created a new condition in which plasmon and visible light trapped in the titanium oxide layer strongly interact, allowing light with a broad range of wavelengths to be absorbed by gold nanoparticles,” says Hiroaki Misawa.

 Source: https://www.global.hokudai.ac.jp/

Strain Improves Performance of Atomically Thin Semiconductor

Researchers in UConn’s Institute of Materials Science significantly improved the performance of an atomically thin semiconductor material by stretching it, an accomplishment that could prove beneficial to engineers designing the next generation of flexible electronics, nano devices, and optical sensors.

In a study appearing in the research journal Nano Letters, Michael Pettes, assistant professor of mechanical engineering, reports that a six-atom thick bilayer of tungsten diselenide exhibited a 100-fold increase in photoluminescence when it was subjected to strain. The material had never exhibited such photoluminescence before.

The findings mark the first time scientists have been able to conclusively show that the properties of atomically thin materials can be mechanically manipulated to enhance their performance, Pettes says. Such capabilities could lead to faster computer processors and more efficient sensors.

The process the researchers used to achieve the outcome is also significant in that it offers a reliable new methodology for measuring the impact of strain on ultrathin materials, something that has been difficult to do and a hindrance to innovation.

Experiments involving strain are often criticized since the strain experienced by these atomically thin materials is difficult to determine and often speculated as being incorrect,” says Pettes. “Our study provides a new methodology for conducting strain-dependent measurements of ultrathin materials, and this is important because strain is predicted to offer orders of magnitude changes in the properties of these materials across many different scientific fields.”

Source: https://today.uconn.edu/

A stamp-sized nanofilm stores more data than 200 DVDs

Ninety percent of the world’s data has been created in the last two years, with a massive 2.5 quintillion bytes generated every single day. As you might suspect, this causes some challenges when it comes to storage. While one option is to gradually turn every square inch of free land into giant data centers, researchers from the  Center for Advanced Optoelectronic Functional Material Research, Northeast Normal University (China) may have come up with a more elegant solution. In a potential breakthrough, they have developed a new nanofilm80 times thinner than a human hair — that is able to store large amounts of data holographically. A single 10-by-10 cm piece of this film could archive more than 1,000 times the amount of data found on a DVD. By our count, that means around 8.5 TB of data. This data can also be retrieved incredibly quickly, at speeds of up to 1GB per second: The equivalent of 20 times the reading speed of modern flash memory.

In the journal Optical Materials Express, the researchers detail the fabrication process of the new film. This involves using a laser to write information onto silver nanoparticles on a titanium dioxide (titania) semiconductor film. This stores the data in the form of 3D holograms, thereby allowing it to be compressed into smaller spaces than regular optical systems.

That’s exciting enough, but what really makes the work promising is the fact that the data is stored in a way that is stable. Previous attempts at creating films for holographic data storage have proven less resilient than alternate storage methods since they can be wiped by exposure to ultraviolet light. That makes them less-than-viable options for long-term information storage. The creators of this new film, however, have shown that it has a high stability even in the presence of such light. This environmental stability means that the device could be used outside — or even conceivably in harsher radiation conditions like outer space.

Going forward, the researchers aim to test their new film by putting it through its paces outdoors. Should all go according to plan, it won’t be too long before this is available on the market. We might be willing to throw down a few bucks on Kickstarter for a piece!

Source: https://www.osapublishing.org
AND
https://www.digitaltrends.com/

Squeeze And Get More Power Out Of Solar Cells

Physicists at the University of Warwick have published new research in the Journal Science  that could literally squeeze more power out of solar cells by physically deforming each of the crystals in the semiconductors used by photovoltaic cells. The paper entitled the “Flexo-Photovoltaic Effect” was written by Professor Marin Alexe, Ming-Min Yang, and Dong Jik Kim who are all based in the University of Warwick’s Department of Physics.

The Warwick researchers looked at the physical constraints on the current design of most commercial solar cells which place an absolute limit on their efficiency. Most commercial solar cells are formed of two layers creating at their boundary a junction between two kinds of semiconductors, p-type with positive charge carriers (holes which can be filled by electrons) and n-type with negative charge carriers (electrons). When light is absorbed, the junction of the two semiconductors sustains an internal field splitting the photo-excited carriers in opposite directions, generating a current and voltage across the junction. Without such junctions the energy cannot be harvested and the photo-exited carriers will simply quickly recombine eliminating any electrical charge. That junction between the two semiconductors is fundamental to getting power out of such a solar cell but it comes with an efficiency limit. This Shockley-Queisser Limit means that of all the power contained in sunlight falling on an ideal solar cell in ideal conditions only a maximum of 33.7% can ever be turned into electricity.

There is however another way that some materials can collect charges produced by the photons of the sun or from elsewhere. The bulk photovoltaic effect occurs in certain semiconductors and insulators where their lack of perfect symmetry around their central point (their non-centrosymmetric structure) allows generation of voltage that can be actually larger than the band gap of that material. Unfortunately the materials that are known to exhibit the anomalous photovoltaic effect have very low power generation efficiencies, and are never used in practical power-generation systems. The Warwick team wondered if it was possible to take the semiconductors that are effective in commercial solar cells and manipulate or push them in some way so that they too could be forced into a non-centrosymmetric structure and possibly therefore also benefit from the bulk photovoltaic effect.

Extending the range of materials that can benefit from the bulk photovoltaic effect has several advantages: it is not necessary to form any kind of junction; any semiconductor with better light absorption can be selected for solar cells, and finally, the ultimate thermodynamic limit of the power conversion efficiency, so-called Shockley-Queisser Limit, can be overcome“,  explains Professor Marin Alexe  (University of Warwick).

Source: https://warwick.ac.uk/