‘Dancing Molecules’ Successfully Repair Severe Spinal Cord Injuries

Northwestern University researchers have developed a new injectable therapy that harnessesdancing molecules” to reverse paralysis and repair tissue after severe spinal cord injuries. In a new study, researchers administered a single injection to tissues surrounding the spinal cords of paralyzed mice. Just four weeks later, the animals regained the ability to walk.

By sending bioactive signals to trigger cells to repair and regenerate, the breakthrough therapy dramatically improved severely injured spinal cords in five key ways: The severed extensions of neurons, called axons, regenerated. Scar tissue, which can create a physical barrier to regeneration and repair, significantly diminished. Myelin, the insulating layer of axons that is important in transmitting electrical signals efficiently, reformed around cells. Functional blood vessels formed to deliver nutrients to cells at the injury site. More motor neurons survived.
After the therapy performs its function, the materials biodegrade into nutrients for the cells within 12 weeks and then completely disappear from the body without noticeable side effects. This is the first study in which researchers controlled the collective motion of molecules through changes in chemical structure to increase a therapeutic’s efficacy.

Our research aims to find a therapy that can prevent individuals from becoming paralyzed after major trauma or disease,” said Northwestern’s Samuel I. Stupp, who led the study. “For decades, this has remained a major challenge for scientists because our body’s central nervous system, which includes the brain and spinal cord, does not have any significant capacity to repair itself after injury or after the onset of a degenerative disease. We are going straight to the FDA to start the process of getting this new therapy approved for use in human patients, who currently have very few treatment options.”

Stupp is Board of Trustees Professor of Materials Science and Engineering, Chemistry, Medicine and Biomedical Engineering at Northwestern, where he is founding director of the Simpson Querrey Institute for BioNanotechnology (SQI) and its affiliated research center, the Center for Regenerative Nanomedicine.

Source: https://news.northwestern.edu/

mRNA Technology Now Used Sucessfully to Treat Heart Disease

Combining technologies that proved hugely successful against cancer and in COVID-19 vaccines, researchers at the University of Pennsylvania have shown they can effectively treat a leading cause of heart disease. For now the success has only been achieved in mice, but the milestone offers hope for millions of people whose heart muscle is damaged by scar tissue. There is no effective treatment for this fibrosis, which leads to heart disease, the leading cause of death in the United States, said Dr. Jonathan Epstein, a Penn professor of cardiovascular research who helped lead the new work, published in the journal Science.

In his new research, Epstein reversed fibrosis by re-engineering cells, as has been done with a successful blood cancer treatment called CAR-T. In this case, however, the treatment took place inside the body rather than in a lab dish. The team delivered the treatment using mRNA technology, which has been proven over the last year with hundreds of millions of people receiving mRNA-based COVID vaccines.

If it works (in people), it really could have enormous impact,” Epstein said. “Almost every type of heart disease is accompanied by fibrosis.”

About 50% of heart failure is directly caused by this scar tissue, which prevents the heart from relaxing and pumping effectively. Fibrosis also is involved in leading causes of lung and kidney disease.

Source: https://eu.usatoday.com