Our Bodies Age in 3 Distinct Shifts

The carnival worker who tries to guess your age relies on aspects of your appearance, such as your posture and whether any wrinkles emanate from the corners of your eyes and lips. If the carny’s guess is more than a few years off, you win a stuffed koala.

But a team of Stanford University School of Medicine scientists doesn’t need to know how you look to guess your age. Instead, it watches a kind of physiological clock: the levels of 373 proteins circulating in your blood. If the clock is off, you don’t win a plush toy. But you may find out important things about your health.

We’ve known for a long time that measuring certain proteins in the blood can give you information about a person’s health status — lipoproteins for cardiovascular health, for example,” said Tony Wyss-Coray, PhD, professor of neurology and neurological sciences, the D. H. Chen Professor II and co-director of the Stanford Alzheimer’s Disease Research Center. “But it hasn’t been appreciated that so many different proteins’ levels — roughly a third of all the ones we looked at — change markedly with advancing age.

Changes in the levels of numerous proteins that migrate from the body’s  tissues into circulating blood not only characterize, but quite possibly cause, the phenomenon of aging, Wyss-Coray said. A paper describing the research was published Dec. 5 in Nature Medicine. Wyss-Coray is the senior author. The lead author is neurology instructor Benoit Lehallier, PhD.

The researchers analyzed plasma — the cell-free, fluid fraction of blood — from 4,263 people ages 18-95. “Proteins are the workhorses of the body’s constituent cells, and when their relative levels undergo substantial changes, it means you’ve changed, too,” Wyss-Coray said. “Looking at thousands of them in plasma gives you a snapshot of what’s going on throughout the body.”

The study’s results suggest that physiological aging does not simply proceed at a perfectly even pace, but rather seems to chart a more herky-jerky trajectory, with three distinct inflection points in the human life cycle. Those three points, occurring on average at ages 34, 60 and 78, stand out as distinct times when the number of different blood-borne proteins that are exhibiting noticeable changes in abundance rises to a crest. This happens because instead of simply increasing or decreasing steadily or staying the same throughout life, the levels of many proteins remain constant for a while and then at one point or another undergo sudden upward or downward shifts. These shifts tend to bunch up at three separate points in a person’s life: young adulthood, late middle age and old age.

The investigators built their clock by looking at composite levels of proteins within groups of people rather than in individuals. But the resulting formula proved able to predict individuals’ ages within a range of three years most of the time. And when it didn’t, there was an interesting upshot: People whose predicted age was substantially lower than their actual one turned out to be remarkably healthy for their age.

The researchers obtained their samples from two large studies. One of them, known as the LonGenity study, has assembled a registry of exceptionally long-lived Ashkenazi Jews. It was able to provide many blood samples from people as old as 95. On measuring the levels of roughly 3,000 proteins in each individual’s plasma, Wyss-Coray’s team identified 1,379 proteins whose levels varied significantly with participants’ age.

Source: https://med.stanford.edu/

Nuclear Fusion One Step Closer

China broke the record by keeping the Experimental Advanced Superconducting Tokamak (EAST) by achieving plasma temperature at 120 million Celsius for 101 seconds and 160 million Celsius for 20 seconds, a major step toward the test run of the fusion reactor.

The Tokamak devise is located at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences. It is designed to replicate the nuclear fusion process that occurs naturally in the sun and stars to provide almost infinite clean energy through controlled nuclear fusion, which is often dubbed the “artificial sun.” The achievement broke a previous record of maintaining the plasma temperature at 100 million C for 100 seconds. According to Li Miao, director of the physics department of the Southern University of Science and Technology in Shenzhen, it is a milestone in reaching the goal of keeping the temperature at a stable level for a long time.

The breakthrough is significant progress, and the ultimate goal should be keeping the temperature at a stable level for a long time,” Li told the Global Times, adding that the next milestone might be to maintain the stability for a week or more.

Achieving a plasma temperature above 100 million C is one of the key challenges to harness the nuclear fusion. At the end of 2020, South Korea reached 100 million C for 20 seconds. The temperature at the core of the sun is widely believed to be 15 million C, meaning that the plasma at the device’s core will be seven times hotter than that of the sun.
The energy generated from nuclear fusion is the most reliable and clean energy, Lin Boqiang, director of the China Center for Energy Economics Research at Xiamen University, told the Global Times on Friday, adding that if the technology can be applied commercially, it will have huge economic benefits. However, Lin cautioned that as the technology is still in the experimental stage, it still need at least 30 years for the technology to come out of the lab. “It’s more like a future technology that’s critical for China’s green development push.”

Source: https://www.globaltimes.cn/

How To Give Strengh To 3D Printed Objects

Allowing users to create objects from simple toys to custom prosthetic parts, plastics are a popular 3D printing material. But these printed parts are mechanically weak — a flaw caused by the imperfect bonding between the individual printed layers that make up the 3D part. Researchers at Texas A&M University, in collaboration with scientists in the company Essentium, Inc. have now developed the technology needed to overcome 3D printing’s “weak spot.” By integrating plasma science and carbon nanotube technology into standard 3D printing, the researchers welded adjacent printed layers more effectively, increasing the overall reliability of the final part.

Texas A&M and Essentium researchers have developed the technology to weld adjacent 3D printed layers more effectively, increasing the reliability of the final product

Finding a way to remedy the inadequate bonding between printed layers has been an ongoing quest in the 3D printing field,” said Micah Green, associate professor in the Artie McFerrin Department of Chemical Engineering. “We have now developed a sophisticated technology that can bolster welding between these layers all while printing the 3D part.”

Plastics are commonly used for extrusion 3D printing, known technically as fused-deposition modeling. In this technique, molten plastic is squeezed out of a nozzle that prints parts layer by layer. As the printed layers cool, they fuse to one another to create the final 3D part. However, studies show that these layers join imperfectly; printed parts are weaker than identical parts made by injection molding where melted plastics simply assume the shape of a preset mold upon cooling. To join these interfaces more thoroughly, additional heating is required, but heating printed parts using something akin to an oven has a major drawback. “If you put something in an oven, it’s going to heat everything, so a 3D-printed part can warp and melt, losing its shape,” Green said. “What we really needed was some way to heat only the interfaces between printed layers and not the whole part.”

To promote inter-layer bonding, the team turned to carbon nanotubes. Since these carbon particles heat in response to electrical currents, the researchers coated the surface of each printed layer with these nanomaterials. Similar to the heating effect of microwaves on food, the team found that these carbon nanotube coatings can be heated using electric currents, allowing the printed layers to bond together.

To apply electricity as the object is being printed, the currents must overcome a tiny space of air between the printhead and the 3D part. One option to bridge this air gap is to use metal electrodes that directly touch the printed part, but Green said this contact can introduce inadvertent damage to the part.

The team collaborated with David Staack, associate professor in the J. Mike Walker ‘66 Department of Mechanical Engineering, to generate a beam of charged air particles, or plasma, that could carry an electrical charge to the surface of the printed part. This technique allowed electric currents to pass through the printed part, heating the nanotubes and welding the layers together.

With the plasma technology and the carbon nanotube-coated thermoplastic material in place, Texas A&M and Essentium researchers added both these components to conventional 3D printers. When the researchers tested the strength of 3D printed parts using their new technology, they found that their strength was comparable to injection-molded parts.

The holy grail of 3D printing has been to get the strength of the 3D-printed part to match that of a molded part,” Green said. “In this study, we have successfully used localized heating to strengthen 3D-printed parts so that their mechanical properties now rival those of molded parts. With our technology, users can now print a custom part, like an individually tailored prosthetic, and this heat-treated part will be much stronger than before.”

The findings have been published in the  journal Nano Letters.

Source: https://today.tamu.edu/

Can Plasma From Recovered Covid-19 Patients Cure Infected Others?

US Food and Drug Administration (FDA) officials announced today they have approved plans for nationwide trials of two treatments for Covid-19, the global pandemic disease caused by the new coronavirus—and for their simultaneous use in perhaps hundreds of hospitals.

The therapeutic agents—convalescent plasma and hyperimmune globulin—are both derived from the blood of people who have recovered from the disease, decoctions of the antibodies that the human immune system makes to fight off germs.


This is an important area of research—the use of products made from a recovered patient’s blood to potentially treat Covid-19,” said FDA commissioner Stephen Hahn in a release announcing the trials. “The FDA had played a key role in organizing a partnership between industry, academic institutions, and government agencies to facilitate expanded access to convalescent plasma. This is certainly a great example of how we can all come together to take swift action to help the American people during a crisis.”

Physicians are already using a somewhat haphazard collection of antiviral and other drugs for people critically ill with Covid-19, because they don’t have any other options. Nothing—no drug, no vaccine—is approved for use specifically against Covid-19 in the United States, so any new possibility is a hopeful one. Convalescent plasma and hyperimmune globulin join the rarified group of therapeutics that scientists are testing, including a trial of the Ebola drug remdesivir and the much-hyped antimalarial/immune suppressants chloroquine and hydroxychloroquine.

Using blood products from people who’ve already beaten a disease is a century-old approach, predating vaccines and antibiotics. Inspired by its use against polio, two physicians at a Naval hospital in Massachusetts tried it on people who had pneumonia as a result of influenza in 1918, with enough success to warrant more tests. The quality of actual studies of efficacy has varied over the decades, but health care workers used convalescent plasma against SARS, MERS, and Ebola. And a couple of studies—small and preliminary—have shown convalescent plasma having some promise against SARS-CoV-2 as well.

It was all promising enough that the FDA wanted to make sure current patients could have access to the plasma at the same time that researchers were starting a more rigorous investigation. “This seems like ancient history, but maybe it isn’t. There have been niche uses of it for a while,” says Michael Joyner, a physiologist at the Mayo Clinic who in March spearheaded the creation of an ad hoc coalition of researchers interested in pursuing the therapy. Joyner is facilitating the 40-center trial of the new therapies approved today by the FDA, with researchers at Johns Hopkins leading the science. (Joyner himself received gamma globulin, a variant of the treatment, as a preventative against hepatitis B in the 1980s, when he was a medical student.)

At Houston Methodist Hospital, James Musser, the chair of Pathology and Genome Medicine, is a friend of Arturo Casadevall, the Johns Hopkins University immunologist who proposed using convalescent serum early in the pandemic. Musser pushed to get his hospital involved, putting out a call for donors—people who had confirmed positive tests for the virus and had gone at least 14 days without symptoms. His hospital is already doing compassionate-use transfusions. “So far, as of yesterday, we’ve transfused four patients,” Musser said on Thursday. He expected a fifth to receive plasma today. And how’d it work?The truth is, it’s far too early,” Musser says. “We, nationally, need to do controlled trials and understand, first and foremost, is this a safe therapeutic? There’s lots of reasons to think it will be, but you never know.”

Source: https://www.wired.com/

Commercial Nuclear Fusion Is Closer Than Ever

Nuclear fusion has been seen as the unattainable holy grail of clean energy for decades, but just in the last year it’s been seeming more and more within reach. As catastrophic climate change looms just over the horizon, the scientific community has galvanized to find more and better solutions to decarbonizing the global economy and replacing fossil fuels with a commercially viable, renewable, and green alternative. While much of the time and capital investment has flowed to more realistic options like solar and wind, some researchers have been dedicating their time and energy to capturing the energy of the sun here on earth–a silver bullet solution to global warming.

Conventional nuclear energy has also been hailed as a good, greenhouse gas emissions-free alternative to fossil fuels, but it has some major drawbacks, from the rare but catastrophic instance of nuclear meltdown to the industrial byproduct of nuclear waste. Nuclear fission, which is what nuclear energy plants currently use to create massive amounts of energy by splitting atoms, creates radioactive waste that remains hazardous for tens of thousands of years, if not longer.

The beauty of nuclear fusion is that, not only does it produce energy without creating radioactive waste since it can be achieved using only hydrogen or lithium, it’s also several times more powerful than fission. If we were ever able to harness it in a commercially viable way, it would mean the end of the oil-based economy as we know it. That’s why any news about nuclear fusion is major news. And in the past couple of years, there’s been a lot of new reports emerging about commercial nuclear fusion getting closer and closer to becoming a reality.

Last summer, reps from the International Thermonuclear Experimental Reactor (ITER), an intergovernmental project headquartered in the south of France, reported that they are a mere six and a half years away from achieving first plasma inside their tokamak–in other words: nuclear fusion by just 2025. Then, just a month later in August, 2019, Oak Ridge National Laboratory reported their own nuclear fusion breakthrough, which uses novel implementation of AI and supercomputing to successfully scale up nuclear fusion experiments and manage plasma.

Then, in October, the Los Alamos National Laboratory‘s Plasma Liner Experiment (PLX) unveiled a totally new approach to nuclear fusion, using the very science-fiction combination of plasma guns, magnets, and lasers. According to the American Physical Society, “the PLX machine combines aspects of both magnetic confinement fusion schemes (e.g. tokamaks) and inertial confinement machines like the National Ignition Facility (NIF). The hybrid approach, although less technologically mature than pure magnetic or inertial confinement concepts, may offer a cheaper and less complex fusion reactor development path.” That project is projected to be up and running by the end of this year.

And now, just this week, there are new and exciting claims about yet another novel fusion technology to vie for the best path toward commercial nuclear fusion. Startup HB11, which has its impetus at Australia’s University of New South Wales (UNSW), has pioneered a technology that uses lasers to encourage nuclear fusion between hydrogen and boron without the use of radioactive materials to facilitate the reaction. They’re so confident about the technology that they have already applied for and received patents in the United States, Japan, and China.

The secret,” reports Popular Mechanics, “is a cutting-edge laser and, well, an element of luck.” According to managing director Warren McKenzie, as quoted by New Atlas,You could say we’re using the hydrogen as a dart, and hoping to hit a boron, and if we hit one, we can start a fusion reaction.” While this may sound a little wishy-washy, McKenzie says that the approach is actually more precise than using extreme heat to facilitate fusion because the laser is directed, whereas heat-based reactors waste huge amounts of energy heating up the entire reactor and waiting for a collision to take place.

This means that this new technology–which is now four decades in the making–could make machines like the tokamak obsolete. UNSW emeritus professor Heinrich Hora’s design “seeks to not just compete with but replace entirely the extremely high-temperature current technologies to achieve fusion. These include fussy and volatile designs like the tokamak or stellarator, which can take months to get up to functionality and still spin out of working order in a matter of microseconds.”

Last but not least, two months ago, Newsweek reported that China is about to start operation on its “artificial sun“—a nuclear fusion device that produces energy by replicating the reactions that take place at the center of the sun. If successful, the device could edge scientists closer to achieving the ultimate goal of nuclear fusion: near limitless, cheap clean energy.

Source: https://www.newsweek.com/