Gel Treats Gum Disease by Fighting Inflammation

A topical gel that blocks the receptor for a metabolic byproduct called succinate treats gum disease by suppressing inflammation and changing the makeup of bacteria in the mouth, according to a new study led by researchers at NYU College of Dentistry and published in Cell ReportsThe research, conducted in mice and using human cells and plaque samples, lays the groundwork for a non-invasive treatment for gum disease that people could apply to the gums at home to prevent or treat gum disease.

Gum disease (also known as periodontitis or periodontal disease) is one of the most prevalent inflammatory diseases, affecting nearly half of adults 30 and older. It is marked by three components: inflammation, an imbalance of unhealthy and healthy bacteria in the mouth, and destruction of the bones and structures that support the teeth. Uncontrolled gum disease can lead to painful and bleeding gums, difficulty chewing, and tooth loss.

You must be logged in to view this content.

How to Prevent Tooth Loss

Research headed by scientists at the National Institute of Dental and Craniofacial Research (NIDCR) has shown how blocking the function of the blood clotting protein, fibrin, prevents bone loss from periodontal (gum) disease in mice. Drawing on animal and human data, the study—headed by NIDCR investigators Niki Moutsopoulos, DDS, PhD, and Thomas Bugge, PhD, found that build-up of fibrin triggers an overactive immune response that damages the gums and underlying bone. The results suggest that suppressing abnormal fibrin activity could hold promise for preventing or treating periodontal disease, as well as other inflammatory disorders—including arthritis and multiple sclerosis—that are marked by fibrin buildup.

Severe periodontal disease can lead to tooth loss and remains a barrier to productivity and quality of life for far too many Americans, especially those lacking adequate access to dental care,” said NIDCR director Rena D’Souza, DDS, PhD. “By providing the most comprehensive picture yet of the underlying mechanisms of periodontal disease, this study brings us closer to more effective methods for prevention and treatment.”

Periodontal disease is a bacterial infection of the tissues supporting the teeth. The condition affects nearly half of people in the United States who are over the age 30, and 70% of those who are 65 years and older. In its early stages, periodontal disease causes redness and swelling (inflammation) of the gums. In advanced stages, called periodontitis, the underlying bone becomes damaged, leading to tooth loss. While scientists have known that periodontitis is driven in part by an exaggerated immune cell response, until now, it was unclear what triggered the response, and how it caused tissue and bone damage.

Moutsopoulos, Bugge, and colleagues reported their findings in Science, in a paper titled, “Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier.”

 

Source: https://www.genengnews.com/

Alzheimer’s May Be Caused By Dental Infection

In a new study scientists reveal yet another reason to keep up on dental hygiene. Bacteria that cause a common yet largely preventable gum infection may also play a role in Alzheimer’s disease. The discovery also offers hope for a treatment that could slow neurodegeneration.

There were many clues in the [features of Alzheimer’s disease] that an infection is at work,” said Casey Lynch, an entrepreneur and co-founder of Cortexyme, a biotech company headquartered at the Verily Life Sciences campus in South San Francisco, who led the new research. “Many of the genetic risk factors for Alzheimer’s are related to immune system function,” she added, which suggests “immune system dysfunction might put people more at risk.

Alzheimer’s disease, an irreversible and progressive brain disorder that leads to memory loss and diminished thinking skills, affects at least 5 million Americans. Clumps of a brain protein known as amyloid plaques are a hallmark sign of the disease. Billions of research dollars have gone towards finding a treatment that destroys these mind-robbing masses. But there’s still no cure.

Not enough people are asking what is upstream of the plaques … and [brain] inflammation,” said Lynch, who has a background in Alzheimer’s research and was frustrated by the string of failed therapies for the disease. Nearly six years ago, Lynch received a call from Stephen Dominy, a psychiatrist at the University of California, San Francisco, who had studied the link between HIV and dementia.

I think I’ve found a bacterial cause of Alzheimer’s,” Dominy, who co-founded Cortexyme with Lynch and now serves as the company’s Chief Scientific Officer, told her. Dominy had spent about 15 years searching for infections that might lead to Alzheimer’s until evidence for a bacterium known as P. gingivalis became “undeniable,” according to Lynch. P. gingivalis causes periodontitis, an infection that destroys the gums and can lead to tooth loss.

When the team examined the brains and cerebrospinal fluid of Alzheimer’s patients, they found DNA from the bacterium. They also discovered bacterial enzymes called gingipains that destroy brain cells were present, too. And when they watched P. gingivalis infections play out in mice, it triggered neurodegeneration in the hippocampus, a brain structure central to memory. It also led to Alzheimer’s hallmark amyloid beta plaque production and inflammation, the researchers discovered.

The scientists then designed and created a new molecule that blocks the gingipain enzymes. The antibiotic reduced the amount of bacteria in infected mice and stopped the formation of amyloid beta plaques while reducing inflammation, the team reports Wednesday in the journal Science Advances.

Source: https://www.discovermagazine.com/