COVID: the Risk of Death is 70% Higher for Male than for Female Patients

Evidence increasingly indicates that male sex is a risk factor for more severe disease and death from COVID-19. Male bias in COVID-19 mortality is observed in nearly all countries with available sex-disaggregated data, and the risk of death in males is ∼1.7 times higher than in females. Aging is strongly associated with higher risk of death in both sexes, but at all ages above 30 years, males have a significantly higher mortality risk, rendering older males the most vulnerable group. Sex differences are intertwined with differences in gender roles socially and with behavioral factors, which also influence COVID-19 incidence and outcomes. However, there are also possible biological mechanisms of male sex bias that affect the severity of COVID-19, particularly with respect to immune responses.

Sex differences beyond sex organs are present across species and extend to physiological systems, including the immune system. Infection by different pathogens results in differential immune responses and disease outcomes by sex, and although the pattern depends on age and other host factors, male sex is more often associated with lower immune responses and higher susceptibility and/or vulnerability to infections in animals. This is generally also the case in humans: Male patients have higher viral loads for hepatitis B virus (HBV) and HIV. Conversely, females generally mount a more robust immune response to vaccines, such as influenza vaccines. However, the heightened immune responses in females can also lead to detrimental immunopathology in infections.

The physiological response to virus infection is initiated when virus replication is detected by pattern recognition receptors. This leads to two antiviral programs by the infected cells.
Source: https://science.sciencemag.org/

How To Intercept Coronavirus Infection

Nanoparticles cloaked in human lung cell membranes and human immune cell membranes can attract and neutralize the SARS-CoV-2 virus in cell culture, causing the virus to lose its ability to hijack host cells and reproduce. The first data describing this new direction for fighting COVID-19 were published on June 17, 2020 in the journal Nano Letters. The “nanosponges” were developed by engineers at the University of California San Diego (UC San Diego) and tested by researchers at Boston University. The UC San Diego researchers call their nano-scale particlesnanosponges” because they soak up harmful pathogens and toxins.

In lab experiments, both the lung cell and immune cell types of nanosponges caused the SARS-CoV-2 virus to lose nearly 90% of its “viral infectivity” in a dose-dependent manner. Viral infectivity is a measure of the ability of the virus to enter the host cell and exploit its resources to replicate and produce additional infectious viral particles.

Instead of targeting the virus itself, these nanosponges are designed to protect the healthy cells the virus invades.

Nanosponges attacking and neutralizing the SARS-COV-2 virus

Traditionally, drug developers for infectious diseases dive deep on the details of the pathogen in order to find druggable targets. Our approach is different. We only need to know what the target cells are. And then we aim to protect the targets by creating biomimetic decoys,” said Liangfang Zhang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering.

His lab first created this biomimetic nanosponge platform more than a decade ago and has been developing it for a wide range of applications ever since. When the novel coronavirus appeared, the idea of using the nanosponge platform to fight it came to Zhang “almost immediately,” he said.

In addition to the encouraging data on neutralizing the virus in cell culture, the researchers note that nanosponges cloaked with fragments of the outer membranes of macrophages could have an added benefit: soaking up inflammatory cytokine proteins, which are implicated in some of the most dangerous aspects of COVID-19 and are driven by immune response to the infection.

Source: https://ucsdnews.ucsd.edu/

Defective immune cells make us old

T cells are supposed to defend us from pathogens, but a new mouse study suggests they may also speed aging. Blocking inflammation caused by the cells or boosting their supply of a key metabolic molecule lessened the severity of some aging-related symptoms in rodents, raising the possibility these treatments could benefit older people. The discovery is “a fantastic result directly linking metabolism, inflammation, and aging,” says immunologist Kylie Quinn of RMIT University, Bundoora, in Australia. “They’ve done a really thorough job of making sure it’s the T cells” that are causing the mice to age quickly.

Our T cells let us down as we age, becoming weaker pathogen fighters. This decline helps explain why elderly people are more susceptible to infections and less responsive to vaccines. One reason T cells falter as we get older is that mitochondria, the structures that serve as power plants inside cells, begin to malfunction. But T cells might not just reflect aging. They could also promote it. Older people have chronic inflammation throughout the body, known as inflammaging, and researchers have proposed it spurs aging. T cells may stoke this process because they release inflammation-stimulating molecules.

To test that hypothesis, immunologist María Mittelbrunn of the University Hospital 12 October’s Health Research Institute and colleagues genetically modified mice to lack a protein in the mitochondria of their T cells. This alteration forces the cells to switch to a less efficient metabolic mechanism for obtaining energy.

By the time the rodents were 7 months old, typically the prime of life for a mouse, they already appeared to be in their dotage, the team reports today in Science. Compared with typical mice, the modified rodents were slow and sluggish. They had shrunken, weak muscles and were less resistant to infections. Like many elderly people, they suffered from weakened hearts and shed much of their body fatT cells from the altered mice poured out molecules that trigger inflammation, the team found, suggesting the cells could be partially responsible for the animals’ physical deterioration. “The immune system plays a role in increasing the velocity of aging,” Mittelbrunn says.

The scientists also tested whether they could slow the aging clock. First they dosed the mice with a drug that blocks tumour necrosis factor alpha (TNF-alpha), one of the inflammation-inducing molecules that T cells unleash; the treatment increased the animals’ grip strength, improved their performance in a maze, and boosted the heart’s pumping power.

Mittelbrunn and colleagues also gave the animals a compound that raises levels of nicotinamide adenine dinucleotide (NAD), a molecule that’s vital for metabolic reactions that enable cells to extract energy from food. NAD’s cellular concentrations typically decline with age, and the researchers found that ramping it up in the mice made them more active and strengthened their hearts.

Source: https://researchbank.rmit.edu.au/
AND
https://www.sciencemag.org/