COVID-19 Vaccine AstraZeneca confirms 100% protection against severe disease, hospitalisation and death

The primary analysis of the Phase III clinical trials from the UK, Brazil and South Africa, published as a preprint in The Lancet confirmed COVID-19 Vaccine AstraZeneca is safe and effective at preventing COVID-19, with no severe cases and no hospitalisations, more than 22 days after the first dose.

Results demonstrated vaccine efficacy of 76% (CI: 59% to 86%) after a first dose, with protection maintained to the second dose. With an inter-dose interval of 12 weeks or more, vaccine efficacy increased to 82% (CI: 63%, 92%).

The analysis also showed the potential for the vaccine to reduce asymptomatic transmission of the virus, based on weekly swabs obtained from volunteers in the UK trial. The data showed that PCR positive readings were reduced by 67% (CI: 49%, 78%) after a single dose, and 50% (CI: 38% to 59%) after the two dose regimen, supporting a substantial impact on transmission of the virus.

The primary analysis for efficacy was based on 17,177 participants accruing 332 symptomatic cases from the Phase III UK (COV002), Brazil (COV003) and South Africa (COV005) trials led by Oxford University and AstraZeneca, a further 201 cases than previously reported.

“This primary analysis reconfirms that our vaccine prevents severe disease and keeps people out of hospital. In addition, extending the dosing interval not only boosts the vaccine’s efficacy, but also enables more people to be vaccinated upfront. Together with the new findings on reduced transmission, we believe this vaccine will have a real impact on the pandemic,”said Sir Mene Pangalos, Executive Vice President BioPharmaceuticals R&D.

These new data provide an important verification of the interim data that has helped regulators such as the MHRA in the UK and elsewhere around the world to grant the vaccine emergency use authorisation. It also helps to support the policy recommendation made by the Joint Committee on Vaccination and Immunisation for a 12-week prime-boost interval, as they look for the optimal approach to roll out, and reassures us that people are protected 22 days after a single dose of the vaccine,” explained Professor Andrew Pollard, Chief Investigator of the Oxford Vaccine Trial, and co-author of the paper.

Data will continue to be analysed and shared with regulators around the world to support their ongoing rolling reviews for emergency supply or conditional approval during the health crisis. AstraZeneca is also seeking Emergency Use Listing from the World Health Organization for an accelerated pathway to vaccine availability in low-income countries.

The vaccine can be stored, transported and handled at normal refrigerated conditions (two-eight degrees Celsius/36-46 degrees Fahrenheit) for at least six months and administered within existing healthcare settings.

Source: https://www.astrazeneca.com/

New Oxford/AstraZeneca’s Coronavirus Vaccine To Cost Just £2 Per Dose

Britain could have 19million doses of Oxford and AstraZeneca‘s coronavirus vaccine by the end of the year after clinical trials showed it is up to 90 per cent effective at preventing infection and can be stored cheaply in a fridge. President of AstraZeneca, Tom Keith-Roach said today that, on top of the four million doses on standby for the UK, a further 15million could be ready to roll out by the end of next month. They will be given to healthcare workers and the elderly first, subject to approval by regulators.

The vaccine is expected to cost just £2 per dose and can be stored in ordinary equipment, unlike other jabs made by Pfizer and Moderna that showed similarly promising results last week but need to be kept in ultra-cold temperatures using expensive equipment.  It’s also a fraction of the price, with Pfizer‘s costing around £15 per dose and Moderna‘s priced at about £26 a shot.

Oxford‘s trials found the jab has a nine in ten chance of working when administered as a half dose first and then a full dose a month later. Efficacy drops to 62 per cent when someone is given two full doses a month apart.

https://www.dailymail.co.uk/

Ai-Da The Artist Robot

A British arts engineering company says it has created the world’s first AI robot capable of drawing people who pose for it. The humanoid called Ai-Da can sketch subjects using a microchip in her eye and a pencil in her robotic hand – coordinated by AI processes and algorithmsAi-Da‘s ability as a life-like robot to draw and paint ultra-realistic portraits from sight has never been achieved before, according to the designers in Cornwall. It is the brainchild of art impresario and galleries Aidan Meller.

Named after Ada Lovelace , the first female computer programmer in the world, Ai-Da the robot has been designed and built by Cornish robotics company Engineered Arts who make robots for communication and entertainment.

In April 2018, Engineered Arts created an ultra-realistic robot to promote the Westworld TV show.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

Pioneering a new AI art movement, we are excited to present Ai-Da, the first professional humanoid artist, who creates her own art, as well as being a performance artist. “As an AI robot, her artwork uses AI processes and algorithms. “The work engages us to think about AI and technological uses and abuses in the world today.” explains Aidan Meller.

Professors and post-Phd students at Oxford University and Goldsmiths are providing Ai-Da with the programming and creative design for her art work. While students at Leeds University are custom designing and programming a bionic arm to create her art work.

Ai-Da has a “RoboThespian” body , featuring an expressive range of movements and she has the ability to talk and respond to questions. The robot also has a “Mesmer” head, featuring realistic silicone skin, 3D printed teeth and gums, integrated eye cameras, as well as hair.

Source: http://fortune.com/
AND
https://www.mirror.co.uk/

Perovskite Solar Panels Go To The Market

Across the globe, a clutch of companies from Oxford, England to Redwood City, Calif. are working to commercialize a new solar technology that could further boost the adoption of renewable energy generation. Earlier this year, Oxford PV, a startup working in tandem with Oxford Universityreceived $3 million from the U.K. government to develop the technology, which uses a new kind of material to make solar cells. Two days ago, in the U.S., a company called Swift Solar raised $7 million to bring the same technology to marketaccording to a filing with the Securities and Exchange Commission.

Called a perovskite cell, the new photovoltaic tech uses hybrid organic-inorganic lead or tin halide-based material as the light-harvesting active layer. It’s the first new technology to come along in years to offer the promise of better efficiency in the conversion of light to electric power at a lower cost than existing technologies.

Perovskite has let us truly rethink what we can do with the silicon-based solar panels we see on roofs today,” said Sam Stranks, the lead scientific advisor and one of the co-founders of Swift Solar, in a Ted Talk. “Another aspect that really excites me: how cheaply these can be made. These thin crystalline films are made by mixing two inexpensive readily abundant salts to make an ink that can be deposited in many different ways… This means that perovskite solar panels could cost less than half of their silicon counterparts.”

First incorporated into solar cells by Japanese researchers in 2009, the perovskite solar cells suffered from low efficiencies and lacked stability to be broadly used in manufacturing. But over the past nine years researchers have steadily improved both the stability of the compounds used and the efficiency that these solar cells generate.

Oxford PV, in the U.K., is now working on developing solar cells that could achieve conversion efficiencies of 37 percentmuch higher than existing polycrystalline photovoltaic or thin-film solar cells.

New chemistries for solar cell manufacturing have been touted in the past, but cost has been an obstacle to commercial rollout, given how cheaply solar panels became thanks in part to a massive push from the Chinese government to increase manufacturing capacity.

Source: https://techcrunch.com/