How to Destroy Cancer by Training Immune Cells

While it sounds like the stuff of science fiction, a cancer treatment in which a patient’s own cells are engineered to hunt down and wipe out their disease — and then linger in the body to stop the cancer returning — is helping to save patients’ lives. The results of the treatment, known as CAR T-cell therapy, have been astonishingPatients who had exhausted all other options and been told they had just months to live have gone into remission. Others have even been cured by the one-off dose.

In trials, all signs of cancer disappeared in more than 80 per cent of patients with acute lymphoblastic leukaemia — the most common cancer in children — after receiving CAR T-cellsSuccess stories include Emily Whitehead, now 16, who in 2012 became the first child in the world to take part in a CAR T-cell trial. Emily, who only had weeks to live when her leukaemia became resistant to conventional therapies, had the revolutionary treatment at the Children’s Hospital of Philadelphia in the U.S. when she was six years old. She is still cancer-free today.

First given in the NHS two years ago to children with a rare blood cancer, CAR T-cell therapy is now used to treat four forms of the disease — and more could follow. It is also being trialled in a number of other blood cancers, such as myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukaemia, and could be available soon for these patients. Early research suggests it can also tackle solid tumours. A new study showed that a new generation of CAR T-cells with more advanced genetic engineering could help treat mesothelioma, ovarian cancer and the deadly brain cancer glioblastoma in mice, without side-effects, reported the journal Science Translational Medicine.

The current uses of CAR T-cell therapy are ‘just the tip of the iceberg’, says Dr Andrew Furness, a consultant medical oncologist at the Royal Marsden Hospital in London. ‘Doctors and scientists are working tirelessly to expand its reach to many more patients.’

CAR T-cell therapy (or chimeric antigen receptor T-cell therapy) is a form of immunotherapy, using the power of a patient’s immune system to fight the disease.

Source: https://www.dailymail.co.uk/

CRISPR Treatment Destroys Cancer Cells

Researchers at Tel Aviv University (TAU) have demonstrated that the CRISPR/Cas9 system is very effective in treating metastatic cancers, a significant step on the way to finding a cure for cancer. The researchers developed a novel lipid nanoparticle-based delivery system that specifically targets cancer cells and destroys them by genetic manipulation. The system, called CRISPR-LNPs, carries a genetic messenger (messenger RNA), which encodes for the CRISPR enzyme Cas9 that acts as molecular scissors that cut the cells’ DNA.

The revolutionary work was conducted in the laboratory of Prof. Dan Peer at TAU. Dr. Daniel Rosenblum led the research together with Ph.D. student Anna Gutkin and colleagues.

To examine the feasibility of using the technology to treat cancer, Prof. Peer and his team chose two of the deadliest cancers: glioblastoma and metastatic ovarian cancer. Glioblastoma is the most aggressive type of brain cancer, with a life expectancy of 15 months after diagnosis and a five-year survival rate of only 3%. The researchers demonstrated that a single treatment with CRISPR-LNPs doubled the average life expectancy of mice with glioblastoma tumors, improving their overall survival rate by about 30%. Ovarian cancer is a major cause of death among women and the most lethal cancer of the female reproductive system. Most patients are diagnosed at an advanced stage of the disease when metastases have already spread throughout the body. Despite progress in recent years, only a third of the patients survive this disease. Treatment with CRISPR-LNPs in a metastatic ovarian cancer mice model increased their overall survival rate by 80%.

The CRISPR genome editing technology, capable of identifying and altering any genetic segment, has revolutionized our ability to disrupt, repair or even replace genes in a personalized manner,” said Prof. Peer. “Despite its extensive use in research, clinical implementation is still in its infancy because an effective delivery system is needed to safely and accurately deliver the CRISPR to its target cells. The delivery system we developed targets the DNA responsible for the cancer cells’ survival. This is an innovative treatment for aggressive cancers that have no effective treatments today.

This is the first study in the world to prove that the CRISPR genome editing system can be used to treat cancer effectively in a living animal,” explained Prof. Peer. “It must be emphasized that this is not chemotherapy. There are no side effects, and a cancer cell treated in this way will never become active again. The molecular scissors of Cas9 cut the cancer cell’s DNA, thereby neutralizing it and permanently preventing replication.”

The results of the groundbreaking study were published in November 2020 in Science Advances.

Source: https://english.tau.ac.il/
AND
 https://www.eurekalert.org/

Magnetic Nanoclusters Kill Hard-To-Reach Tumors

Researchers at Oregon State University have developed an improved technique for using magnetic nanoclusters to kill hard-to-reach tumorsMagnetic nanoparticles – tiny pieces of matter as small as one-billionth of a meter – have shown anti-cancer promise for tumors easily accessible by syringe, allowing the particles to be injected directly into the cancerous growth. Once injected into the tumor, the nanoparticles are exposed to an alternating magnetic field, or AMF. This field causes the nanoparticles to reach temperatures in excess of 100 degrees Fahrenheit, which causes the cancer cells to die. But for some cancer types such as prostate cancer, or the ovarian cancer used in the Oregon State study, direct injection is difficult. In those types of cases, a “systemicdelivery method – intravenous injection, or injection into the abdominal cavity – would be easier and more effective.

The challenge for researchers has been finding the right kind of nanoparticles – ones that, when administered systemically in clinically appropriate doses, accumulate in the tumor well enough to allow the AMF to heat cancer cells to death.

Olena Taratula and Oleh Taratula of the OSU College of Pharmacy tackled the problem by developing nanoclusters, multiatom collections of nanoparticles, with enhanced heating efficiency. The nanoclusters are hexagon-shaped iron oxide nanoparticles doped with cobalt and manganese and loaded into biodegradable nanocarriers.

There had been many attempts to develop nanoparticles that could be administered systemically in safe doses and still allow for hot enough temperatures inside the tumor,” said Olena Taratula, associate professor of pharmaceutical sciences. “Our new nanoplatform is a milestone for treating difficult-to-access tumors with magnetic hyperthermia. This is a proof of concept, and the nanoclusters could potentially be optimized for even greater heating efficiency.”

Findings were published in ACS Nano.

Source: https://today.oregonstate.edu/