Transplanted Follicles Better Heal Wounds

The best Band-Aids could be sprouting from your scalp, a new study suggests. British researchers say hair follicles may have wound-healing properties, with the potential to avoid lifelong scars that can be damaging to one’s confidence.

The study out of Imperial College London reports that scars treated with hair follicle transplants began to act similarly to uninjured skin, generating new cells, blood vessels, gene expression, and even restoring itself through collagen.

Around 100 million people per year acquire scars in high-income countries alone, primarily as a result of surgeries. The global incidence of scars is much higher and includes extensive scarring formed after burn and traumatic injuries. Our work opens new avenues for treating scars and could even change our approach to preventing them,” says Dr Francisco Jiménez, lead hair transplant surgeon at the Mediteknia Clinic and Associate Research Professor at University Fernando Pessoa Canarias, in Gran Canaria, Spain, in a statement.

Scar tissue in the skin lacks hair, sweat glands, blood vessels and nerves, which are all needed for proper regulation of body temperature, as well as pain and overall sensory detection. Scarring can also disrupt movement ability, thus inducing stress and discomfort for someone.

You must be logged in to view this content.

Dissolving Implantable Device Relieves Pain Without Drugs

A Northwestern University-led team of investigators has developed a small, soft, flexible implant that relieves pain on demand and without the use of drugs. Described in a study published in Science, the first-of-its-kind device could provide a much-needed alternative to opioids and other highly addictive medications.

The biocompatible, water-soluble device works by softly wrapping around nerves to deliver precise, targeted cooling, which numbs nerves and blocks pain signals to the brain. An external pump enables the user to remotely activate the device and then increase or decrease its intensity. After the device is no longer needed, it naturally absorbs into the body bypassing the need for surgical extraction.

The scientists believe the device will be most valuable for patients who undergo routine surgeries or even amputations that commonly require post-operative medications. Surgeons could implant the device during the procedure to help manage the patient’s post-operative pain.

A Northwestern University-led team has developed a small, pain-relieving implant that could provide a much-needed alternative to opioids and other highly addictive medications.

Although opioids are extremely effective, they also are extremely addictive,” said John Rogers, PhD, Professor of Materials Science and Engineering, Biomedical Engineering and Neurological Surgery, who led the device’s development. Jonathan Reeder, former postdoctoral fellow in the Rogers laboratory, is the paper’s first author.

As engineers, we are motivated by the idea of treating pain without drugs — in ways that can be turned on and off instantly, with user control over the intensity of relief,” said Rogers, who is also the founding director of the Querrey Simpson Institute for Bioelectronics.The technology reported here exploits the mechanism that causes your fingers to feel number when cold. Our implant allows that effect to be produced in a programmable way, directly and locally to targeted nerves, even those deep within surrounding soft tissues.

While other cooling therapies and nerve blockers have been tested experimentally, all have limitations that the new device overcomes. Previously, scientists have explored cryotherapies, for example, which are injected with a needle. Instead of targeting specific nerves, these imprecise approaches cool large areas of tissue, potentially leading to unwanted effects such as tissue damage and inflammation.

At its widest point, the tiny device is just five millimeters wide. One end is curled into a cuff that softly wraps around a single nerve, bypassing the need for sutures. By precisely targeting only the affected nerve, the device spares surrounding regions from unnecessary cooling, which could lead to side effects.

You don’t want to inadvertently cool other nerves or the tissues that are unrelated to the nerve transmitting the painful stimuli,” MacEwan said. “We want to block the pain signals, not the nerves that control motor function and enable you to use your hand, for example.”

Source: https://news.feinberg.northwestern.edu/

How to Reset the Heart’s Electrical Activity in Seconds

Suffering with a dangerous, irregular heartbeat could soon be a thing of the past thanks to a grape-sized balloon that resets the organ’s electrical activity in seconds. The operation is set to be introduced in heart clinics across the country following widespread approval by NHS health chiefs, with specialists describing it as the ‘next frontier’ of heart treatment.

Roughly 1.4 million Britons suffer with an irregular heartbeat – or atrial fibrillation, as it is medically known – which happens when the nerves in the heart misfire. Over time it can lead to blood pooling and clotting inside the heart, which can trigger a life-threatening stroke, or cause debilitating palpitations, dizziness, shortness of breath and tiredness.

During the new treatment, called radiofrequency balloon ablation, a balloon fitted with ten electrodes is inserted through an artery in the groin and threaded up to the pulmonary veins – which carry oxygenated blood to the heart and where damaged nerves are usually found.

Source: https://www.dailymail.co.uk/

CRISPR Gene Editing Breakthrough could Treat many More Diseases

CRISPR gene editing already promises to fight diseases that were once thought unassailable, but techniques so far have required injecting the tools directly into affected cells. That’s not very practical for some conditions. However, there’s just been a breakthrough. NPR reports that researchers have published results showing that you can inject CRISPR-Cas9 into the bloodstream to make edits, opening the door to the use of gene editing for treating many common diseases.

The experimental treatment tackled a rare genetic disease, transthyretin amyloidosis. Scientists injected volunteers with CRISPR-loaded nanoparticles that were absorbed by the patients’ livers, editing a gene in the organ to disable production of a harmful protein. Levels of that protein plunged within weeks of the injection, saving patients from an illness that can rapidly destroy nerves and other tissues in their bodies.

The test involved just six people, and the research team still has to conduct long-term studies to check for possible negative effects. If this method proves viable on a large scale, though, it could be used to treat illnesses where existing CRISPR techniques aren’t practical, ranging from Alzheimer’s to heart disease.

There are some ethical considerations. Some are already wary about the potential for abusing CRISPR for ‘designer babies‘ and other less-than-altruistic purposes. Bloodstream injections would make it that much easier to perform dubious edits. If used properly, however, this new CRISPR method could avoid (or prevent) suffering that was once considered inevitable.

Source: https://www.npr.org/
AND
https://www.engadget.com/

Arms Nerves Trained To Control Movements of Prosthetic Fingers

Today’s artificial limbs can look very natural, and now an innovative process makes prosthetic hands move more naturally as well. In an innovative experiment, scientists have shown that the nerves in patients’ arms can be trained to control the movements of prosthetic fingers and thumbs.

“This is the biggest advance in motor control for people with amputations in many years,” said Paul Cederna, a professor of plastic surgery and biomedical engineering at the University of Michigan.

A challenge to powering prosthetics has been the minute signals put out by an amputee’s nerves. Cederna’s team boosted the signal by wrapping tiny bits of muscle around nerve endings, according to their study published in Science Translational Medicine.

As the nerves grow into the muscle, the person’s thoughts can create a muscle twitch that produces a signal big enough to be picked up by tiny wires connected to a nearby computer, which tells the prosthetic hand to move.

Our ultimate goal is to have prosthetic limbs that the person views as a part of their body,” Cederna said. In an example of how well the system works, a woman who was nervously tapping her own fingers prompted the prosthetic to tap right along with it, Cederna said. “It was just doing what the other hand was doing, like it was a part of her,” he noted. “This worked the very first time we tried it. There’s no learning for the participants. All of the learning happens in our algorithms. That’s different from other approaches.

The procedure also worked for another amputee in the study who had lost not only his hand, but also part of his arm. “It’s the coolest part of what they’ve shown,” said Lee Fisher, an assistant professor in the University of Pittsburgh’s department of physical medicine and rehabilitation and bioengineering.

Source: https://www.reuters.com/

Amputee Feels In Real-Time With Bionic Hand

Nine years after an accident caused the loss of his left hand, Dennis Aabo Sørensen from Denmark became the first amputee in the world to feel – in real-time – with a sensory-enhanced prosthetic hand that was surgically wired to nerves in his upper arm. Silvestro Micera and his team at EPFL Center for Neuroprosthetics (Ecole Polytechnique Fédérale de Lausanne in Switzerland) and SSSA (Italy) developed the revolutionary sensory feedback that allowed Sørensen to feel again while handling objects. A prototype of this bionic technology was tested in February 2013 during a clinical trial in Rome under the supervision of Paolo Maria Rossini at Gemelli Hospital (Italy). The study is published in the February 5, 2014 edition of Science Translational Medicine, and represents a collaboration called Lifehand 2 between several European universities and hospitals.
CLICK ON THE IMAGE TO ENJOY THE VIDEO

The sensory feedback was incredible,” reports the 36 year-old amputee from Denmark. “I could feel things that I hadn’t been able to feel in over nine years.” In a laboratory setting wearing a blindfold and earplugs, Sørensen was able to detect how strongly he was grasping, as well as the shape and consistency of different objects he picked up with his prosthetic. “When I held an object, I could feel if it was soft or hard, round or square.

Micera and his team enhanced the artificial hand with sensors that detect information about touch. This was done by measuring the tension in artificial tendons that control finger movement and turning this measurement into an electrical current. But this electrical signal is too coarse to be understood by the nervous system. Using computer algorithms, the scientists transformed the electrical signal into an impulse that sensory nerves can interpret. The sense of touch was achieved by sending the digitally refined signal through wires into four electrodes that were surgically implanted into what remains of Sørensen’s upper arm nerves.

This is the first time in neuroprosthetics that sensory feedback has been restored and used by an amputee in real-time to control an artificial limb,” says Micera. “We were worried about reduced sensitivity in Dennis’ nerves since they hadn’t been used in over nine years,” says Stanisa Raspopovic, first author and scientist at EPFL and SSSA. These concerns faded away as the scientists successfully reactivated Sørensen’s sense of touch.

Source: https://actu.epfl.ch/