Sound Plus Electrical Stimulation to Treat Chronic Pain

A University of Minnesota (U OF M) Twin Cities-led team has found that electrical stimulation of the body combined with sound activates the brain’s somatosensory or “tactilecortex, increasing the potential for using the technique to treat chronic pain and other sensory disorders. The researchers tested the non-invasive technique on animals and are planning clinical trials on humans in the near future. During the study, published in the Journal of Neural Engineering, the researchers played broadband sound while electrically stimulating different parts of the body in guinea pigs. They found that the combination of the two activated neurons in the brain’s somatosensory cortex, which is responsible for touch and pain sensations throughout the body.

While the researchers used needle stimulation in their experiments, one could achieve similar results using electrical stimulation devices, such as nerve stimulation (TENS) units, which are widely available. The researchers hope that their findings will lead to a treatment for chronic pain that’s safer and more accessible than drug approaches.

Chronic pain is a huge issue for a lot of people, and for most, it’s not sufficiently treatable,” said Cory Gloeckner, lead author on the paper, a Ph.D. alumnus of the U of M Department of Biomedical Engineering and an assistant professor at John Carroll University.Right now, one of the ways that we try to treat pain is opioids, and we all know that doesn’t work out well for many people. This, on the other hand, is a non-invasive, simple application. It’s not some expensive medical device that you have to buy in order to treat your pain. It’s something that we think would be available to pretty much anyone because of its low cost and simplicity.”

The researchers plan to continue investigating this “multimodal” approach to treating different neurological conditions, potentially integrating music therapy in the future to see how they can further modify the somatosensory cortex.

Source: https://twin-cities.umn.edu/

New Electronic Skin Reacts To Pain Like Human Skin

Researchers have developed electronic artificial skin that reacts to pain just like real skin, opening the way to better prosthetics, smarter robotics and non-invasive alternatives to skin grafts. The prototype device developed by a team at RMIT University (Australia) can electronically replicate the way human skin senses pain. The device mimics the body’s near-instant feedback response and can react to painful sensations with the same lighting speed that nerve signals travel to the brain.

Lead researcher Professor Madhu Bhaskaran said the pain-sensing prototype was a significant advance towards next-generation biomedical technologies and intelligent robotics.

Skin is our body’s largest sensory organ, with complex features designed to send rapid-fire warning signals when anything hurts,” Bhaskaran said. “We’re sensing things all the time through the skin but our pain response only kicks in at a certain point, like when we touch something too hot or too sharp. No electronic technologies have been able to realistically mimic that very human feeling of pain – until now. “Our artificial skin reacts instantly when pressure, heat or cold reach a painful threshold. “It’s a critical step forward in the future development of the sophisticated feedback systems that we need to deliver truly smart prosthetics and intelligent robotics.”

As well as the pain-sensing prototype, the research team has also developed devices made with stretchable electronics that can sense and respond to changes in temperature and pressure. Bhaskaran, co-leader of the Functional Materials and Microsystems group at RMIT, said the three functional prototypes were designed to deliver key features of the skin’s sensing capability in electronic form.

With further development, the stretchable artificial skin could also be a future option for non-invasive skin grafts, where the traditional approach is not viable or not working. “We need further development to integrate this technology into biomedical applications but the fundamentals – biocompatibility, skin-like stretchability – are already there,” Bhaskaran added.

Source: https://www.rmit.edu.au/