Historic Nuclear Fusion Breakthrough

On Aug. 8, 2021, an experiment at Lawrence Livermore National Laboratory’s (LLNL’s) National Ignition Facility (NIF) made a significant step toward ignition, achieving a yield of more than 1.3 megajoules (MJ). This advancement puts researchers at the threshold of fusion ignition, an important goal of the NIF, and opens access to a new experimental regime. The experiment was enabled by focusing laser light from NIF — the size of three football fields — onto a target the size of a BB that produces a hot-spot the diameter of a human hair, generating more than 10 quadrillion watts of fusion power for 100 trillionths of a second.

These extraordinary results from NIF advance the science that NNSA depends on to modernize our nuclear weapons and production as well as open new avenues of research,” said Jill Hruby, DOE under secretary for Nuclear Security and NNSA administrator.

The central mission of NIF is to provide experimental insight and data for NNSA’s science-based Stockpile Stewardship Program. Experiments in pursuit of fusion ignition are an important part of this effort. They provide data in an important experimental regime that is extremely difficult to access, furthering our understanding of the fundamental processes of fusion ignition and burn and enhancing our simulation tools to support stockpile stewardship. Fusion ignition is also an important gateway to enable access to high fusion yields in the future.

This result is a historic step forward for inertial confinement fusion research, opening a fundamentally new regime for exploration and the advancement of our critical national security missions. It is also a testament to the innovation, ingenuity, commitment and grit of this team and the many researchers in this field over the decades who have steadfastly pursued this goal,” said LLNL Director Kim Budil. “For me it demonstrates one of the most important roles of the national labs – our relentless commitment to tackling the biggest and most important scientific grand challenges and finding solutions where others might be dissuaded by the obstacles.”

While a full scientific interpretation of these results will occur through the peer-reviewed journal/conference process, initial analysis shows an 8X improvement over experiments conducted in spring 2021 and a 25X increase over NIF’s 2018 record yield.

Source: https://www.llnl.gov/

Commercial Nuclear Fusion Is Closer Than Ever

Nuclear fusion has been seen as the unattainable holy grail of clean energy for decades, but just in the last year it’s been seeming more and more within reach. As catastrophic climate change looms just over the horizon, the scientific community has galvanized to find more and better solutions to decarbonizing the global economy and replacing fossil fuels with a commercially viable, renewable, and green alternative. While much of the time and capital investment has flowed to more realistic options like solar and wind, some researchers have been dedicating their time and energy to capturing the energy of the sun here on earth–a silver bullet solution to global warming.

Conventional nuclear energy has also been hailed as a good, greenhouse gas emissions-free alternative to fossil fuels, but it has some major drawbacks, from the rare but catastrophic instance of nuclear meltdown to the industrial byproduct of nuclear waste. Nuclear fission, which is what nuclear energy plants currently use to create massive amounts of energy by splitting atoms, creates radioactive waste that remains hazardous for tens of thousands of years, if not longer.

The beauty of nuclear fusion is that, not only does it produce energy without creating radioactive waste since it can be achieved using only hydrogen or lithium, it’s also several times more powerful than fission. If we were ever able to harness it in a commercially viable way, it would mean the end of the oil-based economy as we know it. That’s why any news about nuclear fusion is major news. And in the past couple of years, there’s been a lot of new reports emerging about commercial nuclear fusion getting closer and closer to becoming a reality.

Last summer, reps from the International Thermonuclear Experimental Reactor (ITER), an intergovernmental project headquartered in the south of France, reported that they are a mere six and a half years away from achieving first plasma inside their tokamak–in other words: nuclear fusion by just 2025. Then, just a month later in August, 2019, Oak Ridge National Laboratory reported their own nuclear fusion breakthrough, which uses novel implementation of AI and supercomputing to successfully scale up nuclear fusion experiments and manage plasma.

Then, in October, the Los Alamos National Laboratory‘s Plasma Liner Experiment (PLX) unveiled a totally new approach to nuclear fusion, using the very science-fiction combination of plasma guns, magnets, and lasers. According to the American Physical Society, “the PLX machine combines aspects of both magnetic confinement fusion schemes (e.g. tokamaks) and inertial confinement machines like the National Ignition Facility (NIF). The hybrid approach, although less technologically mature than pure magnetic or inertial confinement concepts, may offer a cheaper and less complex fusion reactor development path.” That project is projected to be up and running by the end of this year.

And now, just this week, there are new and exciting claims about yet another novel fusion technology to vie for the best path toward commercial nuclear fusion. Startup HB11, which has its impetus at Australia’s University of New South Wales (UNSW), has pioneered a technology that uses lasers to encourage nuclear fusion between hydrogen and boron without the use of radioactive materials to facilitate the reaction. They’re so confident about the technology that they have already applied for and received patents in the United States, Japan, and China.

The secret,” reports Popular Mechanics, “is a cutting-edge laser and, well, an element of luck.” According to managing director Warren McKenzie, as quoted by New Atlas,You could say we’re using the hydrogen as a dart, and hoping to hit a boron, and if we hit one, we can start a fusion reaction.” While this may sound a little wishy-washy, McKenzie says that the approach is actually more precise than using extreme heat to facilitate fusion because the laser is directed, whereas heat-based reactors waste huge amounts of energy heating up the entire reactor and waiting for a collision to take place.

This means that this new technology–which is now four decades in the making–could make machines like the tokamak obsolete. UNSW emeritus professor Heinrich Hora’s design “seeks to not just compete with but replace entirely the extremely high-temperature current technologies to achieve fusion. These include fussy and volatile designs like the tokamak or stellarator, which can take months to get up to functionality and still spin out of working order in a matter of microseconds.”

Last but not least, two months ago, Newsweek reported that China is about to start operation on its “artificial sun“—a nuclear fusion device that produces energy by replicating the reactions that take place at the center of the sun. If successful, the device could edge scientists closer to achieving the ultimate goal of nuclear fusion: near limitless, cheap clean energy.

Source: https://www.newsweek.com/
AND
https://oilprice.com/