Newly Developed Molecule Could Cure Alzheimer’s
Israeli scientists gave an artificial molecule they invented to 30 mice suffering from Alzheimer’s — and found that all of them recovered, regaining full cognitive abilities. They stress that this was a small sample of mice and that human testing is far off, but believe the result indicates that within a decade, their synthetic molecule could be developed into a drug for treating the degenerative disease. The peer-reviewed research, led by neuroscientists from Ben-Gurion University, was recently published in the journal Translational Neurodegeneration.
“We are taking a very different approach than efforts at Alzheimer’s medicines that we have seen so far,” Prof. Varda Shoshan-Barmatz, the lead author, told The Times of Israel. “Most are trying to address plaque that forms in the brain, but we are addressing dysfunction elsewhere. And we’re optimistic. Mice who had Alzheimer’s and received our molecule and then underwent tests had the same cognitive abilities as mice who’d never had Alzheimer’s.”
Interestingly, the molecule appears to have been effective without significantly reducing the amount of plaque, which she thinks indicates that scientists may have been overly fixated on the plaque. There is scientific literature on the dysfunction of mitochondria among people with Alzheimer’s. Mitochondria are organelles — tiny miniature organs within cells — that provide the cell with power. Scientists believe that when they malfunction and fail to produce the normal quantities of energy, it can lead to cell death, inflammation and reduced immune response.
Despite Alzheimer’s being linked to mitochondrial dysfunction, no drug candidates are currently focused on mitochondria. Drug research is mostly concerned with combatting the buildup of protein fragments between nerve cells in the brain, which are thought to be linked to Alzheimer’s. The Ben-Gurion University team set out to normalize mitochondrial activity by countering the harmful effects that occur when a protein called VDAC1 is over-produced. The protein plays a crucial role in regulating the metabolic and energetic functions of mitochondria when produced in normal quantities. But the scientists found that it is produced in huge levels in the brains of mice with Alzheimer’s, and interferes with mitochondrial activity.
“In our research, we have shifted the focus of Alzheimer’s treatments from the plaque to this protein, which is produced in the nerve cells around the plaque instead,” said Shoshan-Barmatz. “We prevent this protein from causing cell death, as the molecule interferes with its harmful effect.”
Source: https://in.bgu.ac.il/
AND
https://www.timesofisrael.com/
Recent Comments