Turn Stem Cells Into Bone Using Nothing More Than Sound

Researchers have used sound waves to turn stem cells into bone cells, in a tissue engineering advance that could one day help patients regrow bone lost to cancer or degenerative disease. The innovative stem cell treatment from RMIT researchers in Australia offers a smart way forward for overcoming some of the field’s biggest challenges, through the precision power of high-frequency sound waves.

Tissue engineering is an emerging field that aims to rebuild bone and muscle by harnessing the human body’s natural ability to heal itself. A key challenge in regrowing bone is the need for large amounts of bone cells that will thrive and flourish once implanted in the target area. To date, experimental processes to change adult stem cells into bone cells have used complicated and expensive equipment and have struggled with mass production, making widespread clinical application unrealistic. Additionally, the few clinical trials attempting to regrow bone have largely used stem cells extracted from a patient’s bone marrow – a highly painful procedure.

In a new study published in the journal Small, the RMIT research team showed stem cells treated with high-frequency sound waves turned into bone cells quickly and efficiently. Importantly, the treatment was effective on multiple types of cells including fat-derived stem cells, which are far less painful to extract from a patient. Co-lead researcher Dr Amy Gelmi said the new approach was faster and simpler than other methods.

A magnified image showing adult stem cells in the process of turning into bone cells after treatment with high-frequency sound waves. Green colouring shows the presence of collagen, which the cells produce as they become bone cells

The sound waves cut the treatment time usually required to get stem cells to begin to turn into bone cells by several days,” said Gelmi, a Vice-Chancellor’s Research Fellow at RMIT. “This method also doesn’t require any special ‘bone-inducing’ drugs and it’s very easy to apply to the stem cells. “Our study found this new approach has strong potential to be used for treating the stem cells, before we either coat them onto an implant or inject them directly into the body for tissue engineering.”

The high-frequency sound waves used in the stem cell treatment were generated on a low-cost microchip device developed by RMIT. Co-lead researcher Distinguished Professor Leslie Yeo and his team have spent over a decade researching the interaction of sound waves at frequencies above 10 MHz with different materials. The sound wave-generating device they developed can be used to precisely manipulate cells, fluids or materials. “We can use the sound waves to apply just the right amount of pressure in the right places to the stem cells, to trigger the change process,” Yeo said. “Our device is cheap and simple to use, so could easily be upscaled for treating large numbers of cells simultaneously – vital for effective tissue engineering.”

Source: https://www.rmit.edu.au/

A Single Drop of Blood Can Reveal Stress Hormones

A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood.

Cortisol and other stress hormones regulate many aspects of our physical and mental health, including sleep quality. High levels of cortisol can result in poor sleep, which increases stress that can contribute to panic attacks, heart attacks and other ailments.

Currently, measuring cortisol takes costly and cumbersome laboratory setups, so the Rutgers-led team looked for a way to monitor its natural fluctuations in daily life and provide patients with feedback that allows them to receive the right treatment at the right time.

The researchers used the same technologies used to fabricate computer chips to build sensors thinner than a human hair that can detect biomolecules at low levels. They validated the miniaturized device’s performance on 65 blood samples from patients with rheumatoid arthritis.

The use of nanosensors allowed us to detect cortisol molecules directly without the need for any other molecules or particles to act as labels,” said lead author Reza Mahmoodi, a postdoctoral scholar in the Department of Electrical and Computer Engineering at Rutgers University-New Brunswick.

With technologies like the team’s new microchip, patients can monitor their hormone levels and better manage chronic inflammation, stress and other conditions at a lower cost, said senior author Mehdi Javanmard, an associate professor in RutgersDepartment of Electrical and Computer Engineering.

Our new sensor produces an accurate and reliable response that allows a continuous readout of cortisol levels for real-time analysis,” he added. “It has great potential to be adapted to non-invasive cortisol measurement in other fluids such as saliva and urine. The fact that molecular labels are not required eliminates the need for large bulky instruments like optical microscopes and plate readers, making the readout instrumentation something you can measure ultimately in a small pocket-sized box or even fit onto a wristband one day.”

The study included Rutgers co-author Pengfei Xie, a Ph.D. student, and researchers from the University of Minnesota and University of Pennsylvania. The research was funded by the DARPA ElectRX program.

The study appears in the journal Science Advances.

Source: https://www.rutgers.edu/