Antibody-Drug Delivery System Kills Cancer Cells With Extreme Precision

It sounds like the stuff of science fiction: a man-made crystal that can be attached to antibodies and then supercharge them with potent drugs or imaging agents that can seek out diseased cells with the highest precision, resulting in fewer adverse effects for the patient.

However, that is precisely what researchers from the Australian Centre for Blood Diseases at Monash University in collaboration with the TU Graz (Austria) have developed: the world’s first metal-organic framework (MOFs) antibody-drug delivery system that has the potential to fast-track potent new therapies for cancer, cardiovascular and autoimmune diseases.

Schematic illustration of the new MOF Antibody crystals and their ability to specifically seek out cancer cells to detect them and deliver highly potent drugs with unprecedented precision

The in vitro study showed that when MOF antibody crystals bind to their target cancer cells and if exposed to the low pH in the cells, they break down, delivering the drugs directly and solely to the desired area.

The metal-organic framework, a mixture of metal (zinc) and carbonate ions, and a small organic molecule (an imidazole, a colourless solid compound that is soluble in water) not only keeps the payload attached to the antibody but can also acts as a reservoir of personalised therapeutics. This is a benefit with the potential to become a new medical tool to target specific diseases with customised drugs and optimised doses.

The findings are now published in the world-leading journal Advanced Materials.


Electric Cars Soon Less Expensive Than Petrol Vehicles

An international research team has pioneered and about to patent a new filtration technique that could one day slash lithium extraction times and change the way the future is powered. The world-first study, published today in the journal Nature Materials, presents findings that demonstrate the way in which Metal-Organic Framework (MOF) channels can mimic the filtering function, or ‘ion selectivity’, of biological ion channels embedded within a cell membrane.

Inspired by the precise filtering capabilities of a living cell, the research team has developed a synthetic MOF-based ion channel membrane that is precisely tuned, in both size and chemistry, to filter lithium ions in an ultra-fast, one-directional and highly selective manner. This discovery, developed by researchers at Monash University, CSIRO, the University of Melbourne and the University of Texas at Austin, opens up the possibility to create a revolutionary filtering technology that could substantially change the way in which lithium-from-brine extraction is undertaken. This technology is the subject of a worldwide patent application filed in 2019. Energy Exploration Technologies, Inc. (EnergyX) has since executed a worldwide exclusive licence to commercialise the technology.

Based on this new research, we could one day have the capability to produce simple filters that will take hours to extract lithium from brine, rather than several months to years,” said Professor Huanting Wang, co-lead research author and Professor of Chemical Engineering at Monash University. “Preliminary studies have shown that this technology has a lithium recovery rate of approximately 90 percent – a substantial improvement on 30 percent recovery rate achieved through the current solar evaporation process.”

Professor Benny Freeman from the McKetta Department of Chemical Engineering at The University of Texas at Austin, commented: “Thanks to the international, interdisciplinary and collaborative team involved in this research, we are discovering new routes to very selective separation membranes. “We are both enthusiastic and hopeful that the strategy outlined in this paper will provide a clear roadmap for resource recovery and low energy water purification of many different molecular species.”

Associate Professor (Jefferson) Zhe Liu from The University of Melbourne explained: “The working mechanism of the new MOF-based filtration membrane is particularly interesting, and is a delicate competition between ion partial dehydration and ion affinitive interaction with the functional groups distributed along the MOF nanochannels. “There is significant potential of designing our MOF-based membrane systems for different types of filtration applications, including for use in lithium-from-brine extraction.”


How To Trap CO2 Molecules

Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have taken the first images of carbon dioxide molecules within a molecular cage ­­– part of a highly porous nanoparticle known as a MOF, or metal-organic framework, with great potential for separating and storing gases and liquids.

The images, made at the Stanford-SLAC Cryo-EM Facilities, show two configurations of the COmolecule in its cage, in what scientists call a guest-host relationship; reveal that the cage expands slightly as the CO2 enters; and zoom in on jagged edges where MOF particles may grow by adding more cages.

This is a groundbreaking achievement that is sure to bring unprecedented insights into how these highly porous structures carry out their exceptional functions, and it demonstrates the power of cryo-EM for solving a particularly difficult problem in MOF chemistry,” said Omar Yaghi, a professor at the University of California, Berkeley and a pioneer in this area of chemistry, who was not involved in the study.

The team, led by SLAC/Stanford professors Yi Cui and Wah Chiu, described the study  in the journal Matter.