mRNA Technology Now Used Sucessfully to Treat Heart Disease

Combining technologies that proved hugely successful against cancer and in COVID-19 vaccines, researchers at the University of Pennsylvania have shown they can effectively treat a leading cause of heart disease. For now the success has only been achieved in mice, but the milestone offers hope for millions of people whose heart muscle is damaged by scar tissue. There is no effective treatment for this fibrosis, which leads to heart disease, the leading cause of death in the United States, said Dr. Jonathan Epstein, a Penn professor of cardiovascular research who helped lead the new work, published in the journal Science.

In his new research, Epstein reversed fibrosis by re-engineering cells, as has been done with a successful blood cancer treatment called CAR-T. In this case, however, the treatment took place inside the body rather than in a lab dish. The team delivered the treatment using mRNA technology, which has been proven over the last year with hundreds of millions of people receiving mRNA-based COVID vaccines.

If it works (in people), it really could have enormous impact,” Epstein said. “Almost every type of heart disease is accompanied by fibrosis.”

About 50% of heart failure is directly caused by this scar tissue, which prevents the heart from relaxing and pumping effectively. Fibrosis also is involved in leading causes of lung and kidney disease.

Source: https://eu.usatoday.com

Reprogramming Blood Cells To Fight Against COVID-19

Scientists report that they have successfully created airway basal stem cells in vitro from induced pluripotent stem cells by reprogramming blood cells taken from patients. Given that airway basal cells are defined as stem cells of the airways because they can regenerate the airway epithelium in response to injury, this study may help accelerate research on diseases impacting the airway, including COVID-19, influenza, asthma, and cystic fibrosis, according to the team led by researchers at the Center for Regenerative Medicine at Boston Medical Center and Boston University (CReM), in collaboration with the University of Texas Health Science Center at Houston (UTHealth).

These findings represent a critical first step towards airway regeneration, which will advance the field of regenerative medicine as it relates to airway and lung diseases, added the scientists.

The study, “Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells,” published in Cell Stem Cell, outlines how to generate and purify large quantities of airway basal stem cells using patient samples. This allows for the development of individual, disease-specific airway basal stem cells in a lab that can be used to develop disease models, which may ultimately lead to drug development and a platform in which targeted drug approaches can be tested.

The study’s findings and cells will be shared freely given the CReM’s “Open Source Biology” philosophy, or sharing of information and findings that will help advance science across the globe.

Human lungs, computer illustration.

Human Airway Basal Stem Cells

The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells (iBCs), a population resembling the stem cell of the airway epithelium,” the investigators wrote.

Simply put, we have developed a way to reproduce patient-specific airway basal cells in the lab, with the ultimate goal of being able to regenerate the airway for patients with airway diseases,” said Finn Hawkins, MB, a pulmonologist and physician-scientist at Boston Medical Center, principal investigator in the CReM and the Pulmonary Center, and the study’s first author.

These results could lead to a better understanding, and therefore treatments for, a variety of airway diseases,” noted Shingo Suzuki, PhD, co-first author and post-doctoral researcher at UTHealth. For example, cystic fibrosis is caused by a genetic mutation that is present in all of the airway cells. “If we could make pluripotent stem cells using a sample from a patient who has cystic fibrosis, correct the mutation and replace the defective airway cells with corrected airway basal cells that are otherwise genetically identical, we might eventually be able to cure the disease, and other diseases in the future using this same technology,” added Hawkins.

Source: https://www.genengnews.com/