Simple Diagnostic Tool Predicts Individual Risk of Alzheimer’s

Researchers at Lund University in Sweden have developed an algorithm that combines data from a simple blood test and brief memory tests, to predict with great accuracy who will develop Alzheimer’s disease in the future.

Approximately 20-30% of patients with Alzheimer’s disease are wrongly diagnosed within specialist healthcare, and diagnostic work-up is even more difficult in primary care. Accuracy can be significantly improved by measuring the proteins tau and beta-amyloid via a spinal fluid sample, or PET scan. However, those methods are expensive and only available at a relatively few specialized memory clinics worldwide. Early and accurate diagnosis of AD is becoming even more important, as new drugs that slow down the progression of the disease will hopefully soon become available.

A research group led by Professor Oskar Hansson at Lund University have now shown that a combination of relatively easily acccessible tests can be used for early and reliable diagnosis of Alzheimer’s disease. The study examined 340 patients with mild memory impairment in the Swedish BioFINDER Study, and the results were confirmed in a North American study of 543 people.

A combination of a simple blood test (measuring a variant of the tau protein and a risk gene for Alzheimer’s) and three brief cognitive tests that only take 10 minutes to complete, predicted with over 90% certainty which patients would develop Alzheimer’s dementia within four years. This simple prognostic algorithm was significantly more accurate than the clinical predictions by the dementia experts who examined the patients, but did not have access to expensive spinal fluid testing or PET scans, said Oskar Hansson.

Our algorithm is based on a blood analysis of phosphylated tau and a risk gene for Alzheimer’s, combined with testing of memory and executive function. We have now developed a prototype online tool to estimate the individual risk of a person with mild memory complaints developing Alzheimer’s dementia within four years”, explains Sebastian Palmqvist, first author of the study and associate professor at Lund University.

One clear advantage of the algorithm is that it has been developed for use in clinics without access to advanced diagnostic instruments. In the future, the algorithm might therefore make a major difference in the diagnosis of Alzheimer’s within primary healthcare.

The algorithm has currently only been tested on patients who have been examined in memory clinics. Our hope is that it will also be validated for use in primary healthcare as well as in developing countries with limited resources”, says Sebastian Palmqvist.

Simple diagnostic tools for Alzheimer’s could also improve the development of drugs, as it is difficult to recruit the suitable study partcipants for drug trials in a time- and cost-effective manner. ”The algorithm will enable us to recruit people with Alzheimer’s at an early stage, which is when new drugs have a better chance of slowing the course of the disease”, concludes Professor Oskar Hansson.

The findings are published in Nature Medicine.

Source: https://www.lunduniversity.lu.se/

Smart Nanoparticles To Target Lung Cancer

A new and promising approach for treatment of lung cancer has been developed by researchers at Lund University (Sweden). The treatment combines a novel surgical approach with smart nanoparticles to specifically target lung tumorsLung tumors are often difficult to remove using current surgical techniques due to their location in the lung or the fact that there are multiple tumors which are too small to observe. Tumors also develop natural barriers to prevent drugs and immune cells from reaching the tumor cells.

Illustration of the pH-responsive mesoporous silica nanoparticles designed to specifically target lung cancer

Therefore, patients often receive high doses of chemotherapeutics which are circulated through the entire body and lead to major side effects in other organs. While a number of new experimental therapies have been developed for lung cancer and have shown promise in the lab, a major remaining challenge has been how to deliver the right drug specifically to these difficult to reach tumors”, explains Darcy Wagner, Associate Professor and Head of the research group.

In order to overcome this challenge, the researchers behind the new study: Deniz Bölükbas and Darcy Wagner, researchers of the Lung Bioengineering and regeneration group, and colleagues developed a novel surgical technique which introduces the nanoparticles only into the blood vessels of the lung. The blood vessels around and in tumors are different than those in normal organs. The researchers used this difference to their benefit to direct nanoparticles to the interior of large and dense solid lung tumorsBölükbas and colleagues also used animal models which have a full immune system and closely resemble the types of lung tumors that patients have.

Using this technique, which we call ‘organ restricted vascular delivery’ (ORVD), we were able to see lung cancer cells with the delivered nanoparticles inside of them – something which has not been achieved previously in these types of lung cancer animal models, which closely resemble the clinical scenario”, explains Deniz Bölükbas, post-doctoral fellow and leading author of the article.

The new study has been published in the July issue of Advanced Therapeutics.
Source: https://www.lunduniversity.lu.se/

How To Make Fuel From Tree Waste

Might tree roots, twigs and branches one day be used to power cars? That’s what a Swedish researcher is hoping after developing a pulp byproduct that – on a modest scale – does just that.

Chemical engineering scientist Christian Hulteberg, from Lund University, has used the black liquor residue from pulp and paper manufacturing to create a polymer called lignin.

After purification and filtration, that is then turned into a gasoline mixture.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

We’re actually using the stuff of the wood that they don’t use when they make paper and pulp… It adds value to low-value components of the tree,” he told Reuters.

In environmental terms, he says that gives it an advantage over other biofuels such as ethanol. “A lot of the controversy with ethanol production has been the use of feedstock that you can actually eat,” he said.

Source: https://www.reuters.com/

Plastic Waste Desintegrates Into Nanoparticles

There is a considerable risk that plastic waste in the environment releases nano-sized particles known as nanoplastics, according to a new study from Lund University in Sweden. The researchers studied what happened when takeaway coffee cup lids, for example, were subjected to mechanical breakdown, in an effort to mimic the degradation that happens to plastic in the ocean.The majority of all marine debris is plastic. Calculations have shown that ten per cent of all plastic produced globally ends up in the sea. This plastic waste is subjected to both chemical and mechanical degradation. The sun’s UV rays contribute to the degradation, as do waves, which cause plastic waste to grind against stones on the water’s edge, against the sea floor or against other debris.

Is there a risk that this plastic waste disintegrates to the extent that nanoplastics are released? The research community is divided on whether the degradation process stops at slightly larger plastic fragmentsmicroplastics – or actually continues and creates even smaller particles. The researchers behind the study have now investigated this issue by subjecting plastic material to mechanical degradation under experimental conditions.

We have been able to show that the mechanical effect on the plastic causes the disintegration of plastic down to nano-sized plastic fragments,” says Tommy Cedervall, chemistry researcher at Lund University.

The emphasis of a number of other recent studies from the research community has been on microplastics and their increased distribution among organisms. There are now intense attempts to also identify nanoplastics in the environment. Last year, in an earlier study from Lund University, researchers showed that nano-sized plastic particles can enter the brains of fish and that this causes brain damage which probably disturbs fish behaviour.

It’s important to begin mapping what happens to disintegrated plastic in nature, concludes Tommy Cedervall.

Source: https://www.lunduniversity.lu.se/

VR Model Of The Milky Way Opens New Doors In Surgery

Using data from over a billion stars, a research team at Lund University in Sweden are developing an interactive 3D model of the Milky Way galaxy. This could enable new types of discoveries that aren’t possible with current tools – perhaps even unraveling how the Milky Way was formed. The data being used is from the Gaia satellite that was launched in 2013. It orbits the Earth and collects data from over a billion stars.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

This will be the best map of the Milky Way we have so far. A Virtual Reality immersion is something we are very keen on exploring, as it can help us identify patterns and structures in very complex data”, explains Oscar Agertz, astronomy researcher at Lund University.

The research could also potentially allow surgeons to work together in medical examinations despite being on separate continents.

Source: https://www.lunduniversity.lu.se/

5G Technology, 22 Times More Powerful Than 4G

Researchers at the universities of Lund (Sweden) and Bristol (UK) have conducted a number of experiments using a form of 5G technology called Massive MIMO (multiple input, multiple output), and set not one but two world records in so-called spectrum efficiency for wireless communication. Spectrum efficiency measures how much data can successfully be packed into a radio signal transmitted from an antenna.

This 5G technology developed by the researchers is extremely efficient – in fact, the most efficient technology ever when it comes to managing many simultaneous users. The latest world record was set when researchers from Lund and Bristol attained more than 20 times the total data speed of today’s 4G technology, thereby almost doubling the previous record where they, using the same technology, achieved a twelve-fold improvement.

Setting a new world record was a significant event as it demonstrated that it is possible to transmit 22 times more data compared to current wireless systems. Although the goal is for 5G to increase the total transmission capacity by a factor 1 000, this is still a big step”, says Steffen Malkowsky, researcher in Electrical and Information Technology at the Lund University Faculty of Engineering.

Source: https://www.lunduniversity.lu.se/

Electric Road For Electric Cars

In recent years, electric roads have emerged as potential alternatives to the heavy and expensive batteries currently needed in electric road vehicles. Now researchers at Lund University in Sweden have developed an even smarter technology – that doesn’t require digging up stretches of road to install the system. Instead, a small conductive rail is laid on top of segments of the road.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The vehicle has three contact points with the road through which it connects to the power supply. It works much in the same way as a charging pole; except the vehicle charges both while moving and standing still”, explains Mats Alaküla, professor of industrial electrical engineering and automation at Lund University.

The rail is only active when covered by the vehicle, making it a safe option for cities. The system notices when you leave a driving lane and automatically disconnects the “pick up”– reconnecting when you are back. As a driver you wouldn’t notice anything beyond a symbol on your dashboard.

The current challenges for electric vehicles include the large and expensive batteries needed and the limitations in driving range. An electric road solution reduces the need for batteries by up to 80%.

Modern conventional electric vehicles have a driving range of 300-500 kilometers. With an electric road system covering the national and European road network,  you only need a battery range of 50-100 kilometers, to keep you covered if you come to the end of an electric road”, says Mats Alaküla. For longer distances, around 50% of the national and European road network  (e.g 10 out of 20 km on average) needs the rail installed for vehicles to keep running non-stop. The implementation would be different in cities than in other areas, stresses Mats Alaküla. In cities, the rail would be installed strategically on select road segments, bus stops, loading docks for trucks or waiting lanes for taxis, for example. This way, more complicated areas like intersections or roundabouts can be avoided.

Source: https://www.lunduniversity.lu.se/

Electric Car For MegaCities

Uniti Swedish startup is building Uniti One, an electric car for crammed cities. There have been 3,000 pre-orders for its first model. Uniti One will have “75% lessenvironmental impact than standard electric vehicles. Uniti aims for its first cars hit European roads in 2019.

Uniti is betting on a small and affordable electric car to meet an explosion of interest in the coming decade. And if Swedish car fans are anything to go by, it may work. Just a couple of months after making its first model available for pre-order through Swedish electronics retailer Mediamarkt, more than 3,000 people have queued up for the company’s sleek two-seater. The total value of the pre-orders, which are fully refundable, now correspond to some 500 million krona (€50 million). “This is an important milestone for our new company,” says Robin Eriksson, Chief Marketing Officer at Uniti in a press release, adding: “We are now working intensively with our development and production partners to finalise supply potential so we can scale accordingly.

Uniti One was unveiled in December and will retail for around 150k SEK ($17,000) a piece. After releasing the vehicle for pre orders this winter, interest has exploded in Sweden. Uniti’s two-seater has been designed with megacities in mind. Initially developed out of Lund University in Southern Sweden, Uniti’s dream of a small-scale electric urban vehicle became a freestanding project in 2016, when the new startup took in just over SEK 12 million ($1,35M) to create a production-ready prototype.

Uniti‘s vehicle is expected to have a range of 150 to 300 kilometers, and will be tailored for urban environments on account of its small size. Uniti claims its car emits 75 percent less carbon-dioxide over a lifecycle than many of today’s electric vehicles.

We see our vehicle as a complement to the bigger cars and will be a second car for many customers. A small two-seater is easier sell,” Eriksson said.

Source: https://www.uniti.earth/
AND
https://www.technologybreakingnews.com/