New Drug Treats Cataracts Without the Need for Surgery

A revolutionary new treatment for cataracts has shown extremely positive results in laboratory tests, giving hope that the condition, that currently can only be cured with surgery, could soon be treated with drugs.

According to the World Health Organization (WHO), 65.2 million people worldwide are living with cataracts, the leading cause of blindness and vision impairment worldwide. Cataract is a clouding of the eye lens that is caused by a disorganisation of the proteins in the lens that leads to clumps of protein forming that scatter light and severely reduce transmission to the retina. This often occurs with age, but can also be caused by the eye’s overexposure to the sun or injury, as well as smoking, medical conditions such as diabetes, and some medications. 

Surgery can correct the condition by replacing the lens with an artificial oneA team of international scientists, led by Professor Barbara Pierscionek, Deputy Dean (Research and Innovation) in the Faculty of Health, Education, Medicine and Social Care at Anglia Ruskin University (ARU), have been carrying out advanced optical tests on an oxysterol compound that had been proposed as an anti-cataract drug.

The compound oxysterol, is an oxygenated derivative of cholesterol that plays a role in the regulation and transport of cholesterolThis means that the protein organisation of the lens is being restored, resulting in the lens being better able to focus. This was supported by a reduction in lens opacity in 46% of cases.

The researchers tested an assortment of 35 wild mice and mice genetically altered to develop lens cloudiness through an alteration of their αB-crystallin or αA-crystallin proteinsIn the right eye of 26 mice, the researchers administered a single drop of an oxysterol compound, VP1-001Trusted Source, directly onto the ocular surface. Meanwhile, they gave a neutral drop of cyclodextrin in their left eyes. Nine mice were left untreated as a control group. The target of the treatment was the αA- and αB-crystallin mutations that often cause cataracts in aging.
The results have been published today in the peer-reviewed journal Investigative Ophthalmology and Visual Science.

Source: https://aru.ac.uk/
and
https://www.thebrighterside.news/

Eye Scanner Detects Molecular Aging in Humans

People often say that eyes are windows to the soul. Now it appears they may also be windows to human aging.  All people age, but individuals do so at different rates, some faster and others slower. While this observation is common knowledge, there is no universally accepted measure of biological aging. Numerous aging-related metrics have been proposed and tested, but no marker to date has been identified or noninvasive method developed that can accurately measure and track biological aging in individuals. In what is believed to be the first study of its kind,  researchers from the Boston University School of Medicine (BUSM)  have discovered that a specialized eye scanner that accurately measures spectroscopic signals from proteins in lens of the eye can detect and track biological aging in living humans.

According to the researchers, chronological age does not adequately measure individual variation in the rate of biological aging.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The absence of clinical tools and metrics to quantitatively evaluate how each person is aging at the molecular level represents a major impediment to understanding aging and maximizing health throughout life,” explains corresponding author Lee E. Goldstein, MD, PhD, associate professor of neurology at BUSM.

The lens contains proteins that accumulate aging-related changes throughout life. These lens proteins provide a permanent record of each person’s life history of aging. Our eye scanner can decode this record of how a person is aging at the molecular level.”

The researchers believe these results pave the way for a potentially transformative clinical tool for objective assessment and tracking of molecular aging in humans. “The framework for clinical implementation of this technology to measure molecular aging is similar to other recently adopted clinical biomarkers, including PET brain imaging for Alzheimer’s disease, bone densitometry for osteoporosis and serum blood tests for diabetes mellitus,” adds Dr. Goldstein, who also holds an appointment at Boston University College of Engineering.

While large test batteries incorporating composite metrics have been developed to track human aging, these are far removed from underlying molecular mechanisms of aging and are ill-suited for personalized longitudinal medical care. “By contrast, eye scanning technology that probes lens protein affords a rapid, noninvasive, objective technique for direct measurement of molecular aging that can be easily, quickly, and safely implemented at the point of care. Such a metric affords potential for precision medical care across the lifespan.”

The research team included investigators at Boston University College of Engineering and School of Public Health, Boston Children’s Hospital, Massachusetts General Hospital, Harvard Medical School and the University of Washington, Seattle.

The findings appear online in Journal of Gerontology: Biological Sciences.

Source: https://www.bumc.bu.edu/