Batteryless Device Detects Covid Droplets In the Air Around You

Researchers have developed a unique batteryless and wireless device that can detect within no time coronavirus in the air, if your surroundings contain Covid-19 particles or droplets the moment they enter the vicinity.

The device, which requires no batteries, employs a magnetostrictive clad plate composed of iron, cobalt and nickel, generating power via alternative magnetisation caused by vibration.

You must be logged in to view this content.

Low Cost Batteries for Renewable Energy Sources

As the world builds out ever larger installations of wind and solar power systems, the need is growing fast for economical, large-scale backup systems to provide power when the sun is down and the air is calm. Today’s lithium-ion batteries are still too expensive for most such applications, and other options such as pumped hydro require specific topography that’s not always available. Now, researchers at MIT and elsewhere have developed a new kind of battery, made entirely from abundant and inexpensive materials, that could help to fill that gap. The new battery architecture, which uses aluminum and sulfur as its two electrode materials, with a molten salt electrolyte in between, is described today in the journal Nature, in a paper by MIT Professor Donald Sadoway, along with 15 others at MIT and in China, Canada, Kentucky, and Tennessee.

I wanted to invent something that was better, much better, than lithium-ion batteries for small-scale stationary storage, and ultimately for automotive [uses],” explains Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry. In addition to being expensive, lithium-ion batteries contain a flammable electrolyte, making them less than ideal for transportation. So, Sadoway started studying the periodic table, looking for cheap, Earth-abundant metals that might be able to substitute for lithium. The commercially dominant metal, iron, doesn’t have the right electrochemical properties for an efficient battery, he says. But the second-most-abundant metal in the marketplace — and actually the most abundant metal on Earth — is aluminum. “So, I said, well, let’s just make that a bookend. It’s gonna be aluminum,” he says.

Source: https://news.mit.edu/

Blood iron levels could be key to slowing ageing

Genes linked to ageing that could help explain why some people age at different rates to others have been identified by scientists. The international study using genetic data from more than a million people suggests that maintaining healthy levels of iron in the blood could be a key to ageing better and living longerThe findings could accelerate the development of drugs to reduce age-related diseases, extend healthy years of life and increase the chances of living to old age free of disease, the researchers say.

Scientists from the University of Edinburgh and the Max Planck Institute for Biology of Ageing in Germany focused on three measures linked to biological ageinglifespan, years of life lived free of disease (healthspan), and being extremely long–lived (longevity). Biological ageing – the rate at which our bodies decline over timevaries between people and drives the world’s most fatal diseases, including heart disease, dementia and cancers.

The researchers pooled information from three public datasets to enable an analysis in unprecedented detail. The combined dataset was equivalent to studying 1.75 million lifespans or more than 60,000 extremely long-lived people. The team pinpointed ten regions of the genome linked to long lifespan, healthspan and longevity. They also found that gene sets linked to iron were overrepresented in their analysis of all three measures of ageing.

Source: https://www.thebrighterside.news/

Blood Iron Levels Are Key To Slowing Ageing

Genes that could help explain why some people age at different rates to others have been identified by scientists. The international study using genetic data from more than a million people suggests that maintaining healthy levels of iron in the blood could be a key to ageing better and living longer. The findings could accelerate the development of drugs to reduce age-related diseases, extend healthy years of life and increase the chances of living to old age free of disease, the researchers say.

Scientists from the University of Edinburgh and the Max Planck Institute for Biology of Ageing in Germany focused on three measures linked to biological ageinglifespan, years of life lived free of disease (healthspan), and being extremely long–lived (longevity). Biological ageing – the rate at which our bodies decline over time – varies between people and drives the world’s most fatal diseases, including heart disease, dementia and cancers. The researchers pooled information from three public datasets to enable an analysis in unprecedented detail. The combined dataset was equivalent to studying 1.75 million lifespans or more than 60,000 extremely long-lived people. The team pinpointed ten regions of the genome linked to long lifespan, healthspan and longevity. They also found that gene sets linked to iron were overrepresented in their analysis of all three measures of ageing. The researchers confirmed this using a statistical method – known as Mendelian randomisation – that suggested that genes involved in metabolising iron in the blood are partly responsible for a healthy long life.

Blood iron is affected by diet and abnormally high or low levels are linked to age-related conditions such as Parkinson’s disease, liver disease and a decline in the body’s ability to fight infection in older age. The researchers say that designing a drug that could mimic the influence of genetic variation on iron metabolism could be a future step to overcome some of the effects of ageing, but caution that more work is required.

Anonymised datasets linking genetic variation to healthspan, lifespan, and longevity were downloaded from the publicly available Zenodo, Edinburgh DataShare and Longevity Genomics servers.

We are very excited by these findings as they strongly suggest that high levels of iron in the blood reduces our healthy years of life, and keeping these levels in check could prevent age-related damage. We speculate that our findings on iron metabolism might also start to explain why very high levels of iron-rich red meat in the diet has been linked to age-related conditions such as heart disease”, said Dr Paul Timmers from the Usher Institute.

The study was funded by the Medical Research Council and is published in the journal Nature Communications.

Source: https://www.ed.ac.uk/

Swarms Of NanoRobots Quickly Clean-up Radioactive Waste

According to some experts, nuclear power holds great promise for meeting the world’s growing energy demands without generating greenhouse gases. But scientists need to find a way to remove radioactive isotopes, both from wastewater generated by nuclear power plants and from the environment in case of a spill. Now, a team of researchers from  the University of Chemistry and Technology and the Institute of Organic Chemistry and Biochemistry in Prague, Czech Republic,  reporting in ACS Nano have developed tiny, self-propelled robots that remove radioactive uranium from simulated wastewater.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The accidental release of radioactive waste, such as what occurred in the Chernobyl and Fukushima nuclear plant disasters, poses large threats to the environment, humans, and wildlife. Scientists have developed materials to capture, separate, remove and recover radioactive uranium from water, but the materials have limitations. One of the most promising recent approaches is the use of metal-organic frameworks (MOFs) — compounds that can trap specific substances, including radioactive uranium, within their porous structures. Martin Pumera and colleagues wanted to add a micromotor to a rod-shaped MOF called ZIF-8 to see if it could quickly clean up radioactive waste.

To make their self-propelled microrobots, the researchers designed ZIF-8 rods with diameters about 1/15 that of a human hair. The researchers added iron atoms and iron oxide nanoparticles to stabilize the structures and make them magnetic, respectively. Catalytic platinum nanoparticles placed at one end of each rod converted hydrogen peroxidefuel” in the water into oxygen bubbles, which propelled the microrobots at a speed of about 60 times their own length per second. In simulated radioactive wastewater, the microrobots removed 96% of the uranium in an hour. The team collected the uranium-loaded rods with a magnet and stripped off the uranium, allowing the tiny robots to be recycled. The self-propelled microrobots could someday help in the management and remediation of radioactive waste, the researchers say.

Source: https://pubs.acs.org/
AND
https://scitechdaily.com/

Cost-Effective Method for Hydrogen Fuel Production

Nanoparticles composed of nickel and iron have been found to be more effective and efficient than other, more costly materials when used as catalysts in the production of hydrogen fuel through water electrolysis. The discovery was made by University of Arkansas researchers Jingyi Chen, associate professor of physical chemistry, and Lauren Greenlee, assistant professor of chemical engineering, as well as colleagues from Brookhaven National Lab and Argonne National Lab. The researchers demonstrated that using nanocatalysts composed of nickel and iron increases the efficiency of water electrolysis, the process of breaking water atoms apart to produce hydrogen and oxygen and combining them with electrons to create hydrogen gas.

Chen and her colleagues discovered that when nanoparticles composed of an iron and nickel shell around a nickel core are applied to the process, they interact with the hydrogen and oxygen atoms to weaken the bonds, increasing the efficiency of the reaction by allowing the generation of oxygen more easily. Nickel and iron are also less expensive than other catalysts, which are made from scarce materials.

This marks a step toward making water electrolysis a more practical and affordable method for producing hydrogen fuel. Current methods of water electrolysis are too energy-intensive to be effective.

Chen, Greenlee and their colleagues recently published their results in the journal Nanoscale.

Source: https://news.uark.edu/

How To Reverse Vascular Disease In Kidney Failure

By loading a chelation drug into a nano-sized homing device, researchers at Clemson University have reversed in an animal model the deadliest effects of chronic kidney disease, which kills more people in the United States each year than breast or prostate cancer. When kidneys stop working properly, calcium builds up in artery tissue, leading to heart disease. Although nearly half a million Americans receive kidney dialysis, heart disease is the leading cause of death for people with chronic kidney disease.

Human kidney cross section on scientific background

The findings are very exciting scientifically, but also for the thousands of patients who could potentially benefit from this technology one day,” said Naren Vyavahare, professor of bioengineering at Clemson and the principal investigator of the research.

Chelation, a method of removing metals such as iron and lead from the body, has been used experimentally for some people with heart disease. The therapy is not approved by the Food and Drug Administration, but the National Institutes of Health has sponsored two large-scale, multi-center studies using ethylene diamine tetra-acetic acid, or EDTA, as chelation therapy for people with heart disease.

In clinical studies, EDTA is included in an infusion that circulates through the body; it’s systemic and non-specific. This method of chelation has shown good results in improving heart function, especially in diabetic patients, Vyavahare said. But EDTA infusion therapy is arduous (it requires 40 infusions over a period of a year), and it can cause side effects, including a depletion of calcium from the blood and from bone.

Now, in a paper published in Scientific Reports, a Nature publication, Vyavahare’s team describes how they developed an animal model that mimics a human’s chronic kidney disease. Animals were treated either with EDTA infusions, like in the NIH human trials, or with EDTA enclosed in a nanoparticle coupled with an antibody that seeks out damaged elastin. In animals that received the targeted therapy, calcium buildup was destroyed, without causing side effects, better than with EDTA infusions alone. Moreover, the calcification did not come back up to four weeks after the last injection, even though other signs of chronic kidney disease were present.

Source: http://newsstand.clemson.edu/

2D Material Revolutionizes Solar Fuel Generation

Following the isolation of graphene in 2004, a race began to synthesize new two-dimensional materials. 2D materials are single-layer substances with a thickness of between one atom and a few nanometers (billionths of a meter). They have unique properties linked to their reduced dimensionality and play a key role in the development of nanotechnology and nanoengineering.

An international group of researchers including Brazilian scientists affiliated with the University of Campinas (UNICAMP) have succeeded in producing a new material with these characteristics.

The researchers extracted a 2D material they call hematene from ordinary iron ore like that mined in many parts of the world, including Brazil. The material is only three atoms thick and is thought to have enhanced photocatalytic properties.

International group of researchers including Brazilian scientists obtain new material from iron ore with application as a photocatalyst

The research was conducted at the Center for Computational Engineering and Sciences (CCES), one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, and during a research internship abroad that was also supported by FAPESP via a specific scholarship.

Douglas Soares Galvão, a researcher at CCES and one of the authors of the study, told Agência FAPESP about the discovery. “The material we synthesized can act as a photocatalyst to split water into hydrogen and oxygen, so that electricity can be generated from hydrogen, for example, as well as having several other potential applications,” he said.

The new material was exfoliated from hematite, one of the most common minerals on earth and the main source of iron, which is the cheapest metal, used in many products and above all to make steel.

Unlike carbon and its 2D form graphene, hematite is a non-van der Waals material, meaning it is held together by 3D bonding networks rather than by nonchemical and comparatively weaker atomic van der Waals interactions, which are noncovalent (they do not involve the sharing of one or more pairs of electrons by the atoms that participate in the bond).

Because it is a naturally occurring mineral, has highly oriented, large crystals and is a non-van der Waals material, the researchers believe that hematite is an excellent precursor for the exfoliation of novel 2D materials.

Most of the 2D materials synthesized to date were derived from samples of van der Waals solids. Non-van der Waals 2D materials with highly ordered atomic layers and large grains are still rare,” Galvão said.

Hematene was synthesized by the liquid-phase exfoliation of hematite ore in an organic solvent, N,N-dimethylformamide (DMF). Transmission electron microscopy confirmed the exfoliation and formation of hematene in single sheets with a thickness of only three iron and oxygen atoms (monolayer) and in randomly stacked sheets (bilayer).

The innovation is described in an article published in Nature Nanotechnology.

Source: http://agencia.fapesp.br/

 

Brain Metals Drive Alzheimer’s Progression

Alzheimer’s disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegenerative condition, by an international research collaboration including the University of Warwick.

Iron is an essential element in the brain, so it is critical to understand how its management is affected in Alzheimer’s disease. The advanced X-ray techniques that we used in this study have delivered a step-change in the level of information that we can obtain about iron chemistry in the amyloid plaques. We are excited to have these new insights into how amyloid plaque formation influences iron chemistry in the human brain, as our findings coincide with efforts by others to treat Alzheimer’s disease with iron-modifying drugs,” commented Dr Joanna Collingwood, from Warwick’s School of Engineering, who was part of a research team which characterised iron species associated with the formation of amyloid protein plaques in the human brainabnormal clusters of proteins in the brain. The formation of these plaques is associated with toxicity which causes cell and tissue death, leading to mental deterioration in Alzheimer’s patients.

They found that in brains affected by Alzheimer’s, several chemically-reduced iron species including a proliferation of a magnetic iron oxide called magnetite – which is not commonly found in the human brainoccur in the amyloid protein plaques. The team had previously shown that these minerals can form when iron and the amyloid protein interact with each other. Thanks to advanced measurement capabilities at synchrotron X-ray facilities in the UK and USA, including the Diamond Light Source I08 beamline in Oxfordshire, the team has now shown detailed evidence that these processes took place in the brains of individuals who had Alzheimer’s disease. They also made unique observations about the forms of calcium minerals present in the amyloid plaques.

The team, led by an EPSRC-funded collaboration between University of Warwick and Keele University – and which includes researchers from University of Florida and The University of Texas at San Antonio – made their discovery by extracting amyloid plaque cores from two deceased patients who had a formal diagnosis of Alzheimer’s. The researchers scanned the plaque cores using state-of-the-art X-ray microscopy at the Advanced Light Source in Berkeley, USA and at beamline I08 at the Diamond Light Source synchrotron in Oxfordshire, to determine the chemical properties of the minerals within them.

Source: https://warwick.ac.uk/

New Cathode Triples the Energy Storage of Lithium-Ion Batteries

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve lithium-ion batteries—the most common type of battery found in home electronics and a promising solution for grid-scale energy storage. Increasing the energy density of lithium-ion batteries could facilitate the development of advanced technologies with long-lasting batteries, as well as the widespread use of wind and solar energy. Now, researchers have made significant progress toward achieving that goal. A collaboration led by scientists at the University of Maryland (UMD), the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and the U.S. Army Research Lab have developed and studied a new cathode material that could triple the energy density of lithium-ion battery electrodes

Lithium-ion batteries consist of an anode and a cathode,” said Xiulin Fan, a scientist at UMD and one of the lead authors of the paper. “Compared to the large capacity of the commercial graphite anodes used in lithium-ion batteries, the capacity of the cathodes is far more limited. Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries.

Scientists at UMD synthesized a new cathode material, a modified and engineered form of iron trifluoride (FeF3), which is composed of cost-effective and environmentally benign elements—iron and fluorine. Researchers have been interested in using chemical compounds like FeF3 in lithium-ion batteries because they offer inherently higher capacities than traditional cathode materials.

The materials normally used in lithium-ion batteries are based on intercalation chemistry,” said Enyuan Hu, a chemist at Brookhaven and one of the lead authors of the paper. “This type of chemical reaction is very efficient; however, it only transfers a single electron, so the cathode capacity is limited. Some compounds like FeF3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction.

The findings are published in Nature Communications.

Source: https://www.bnl.gov/