Microrobot Fish Swims Through the Body to Vomit Drugs on cancer

Delivering chemotherapy drugs directly to cancers could help reduce side effects, and soon that job could be done by tiny 3D-printed robotic animals. These microrobots are steered by magnets, and only release their drug payload when they encounter the acidic environment around a tumor.

A new microrobot fish could one day swim through the body with a mouthful of drugs, and automatically spit them up when it encounters cancer cells

The new microrobots are made of hydrogel 3D printed into the shape of different animals, like a fish, a crab and a butterfly, with voids that can carry particles. The team adjusted the printing density in specific areas, like the edges of the crab’s claws or the fish’s mouth, so that they can open or close in response to changes in acidity. Finally, the microrobots were placed in a solution containing iron oxide nanoparticles to make them magnetic.

The end result was microrobots that could be loaded up with drug nanoparticles and steered towards a target location using magnets, where they would release their payload automatically due to changes in pH levels.

In lab tests, the researchers used magnets to guide a fish microrobot through simulated blood vessels, towards a cluster of cancer cells at one end. In that area, the team made the solution slightly more acidic and the fish opened its mouth and spat out the drugs on cue, killing the cancer cells. In other tests, crab microrobots could be made to clasp drug nanoparticles with their claws, scuttle to a target location, and release them.

Source: https://newatlas.com/

Swarms Of NanoRobots Quickly Clean-up Radioactive Waste

According to some experts, nuclear power holds great promise for meeting the world’s growing energy demands without generating greenhouse gases. But scientists need to find a way to remove radioactive isotopes, both from wastewater generated by nuclear power plants and from the environment in case of a spill. Now, a team of researchers from  the University of Chemistry and Technology and the Institute of Organic Chemistry and Biochemistry in Prague, Czech Republic,  reporting in ACS Nano have developed tiny, self-propelled robots that remove radioactive uranium from simulated wastewater.

CLICK ON THE IMAGE TO ENJOY THE VIDEO

The accidental release of radioactive waste, such as what occurred in the Chernobyl and Fukushima nuclear plant disasters, poses large threats to the environment, humans, and wildlife. Scientists have developed materials to capture, separate, remove and recover radioactive uranium from water, but the materials have limitations. One of the most promising recent approaches is the use of metal-organic frameworks (MOFs) — compounds that can trap specific substances, including radioactive uranium, within their porous structures. Martin Pumera and colleagues wanted to add a micromotor to a rod-shaped MOF called ZIF-8 to see if it could quickly clean up radioactive waste.

To make their self-propelled microrobots, the researchers designed ZIF-8 rods with diameters about 1/15 that of a human hair. The researchers added iron atoms and iron oxide nanoparticles to stabilize the structures and make them magnetic, respectively. Catalytic platinum nanoparticles placed at one end of each rod converted hydrogen peroxidefuel” in the water into oxygen bubbles, which propelled the microrobots at a speed of about 60 times their own length per second. In simulated radioactive wastewater, the microrobots removed 96% of the uranium in an hour. The team collected the uranium-loaded rods with a magnet and stripped off the uranium, allowing the tiny robots to be recycled. The self-propelled microrobots could someday help in the management and remediation of radioactive waste, the researchers say.

Source: https://pubs.acs.org/
AND
https://scitechdaily.com/

Magnetic Nanoclusters Kill Hard-To-Reach Tumors

Researchers at Oregon State University have developed an improved technique for using magnetic nanoclusters to kill hard-to-reach tumorsMagnetic nanoparticles – tiny pieces of matter as small as one-billionth of a meter – have shown anti-cancer promise for tumors easily accessible by syringe, allowing the particles to be injected directly into the cancerous growth. Once injected into the tumor, the nanoparticles are exposed to an alternating magnetic field, or AMF. This field causes the nanoparticles to reach temperatures in excess of 100 degrees Fahrenheit, which causes the cancer cells to die. But for some cancer types such as prostate cancer, or the ovarian cancer used in the Oregon State study, direct injection is difficult. In those types of cases, a “systemicdelivery method – intravenous injection, or injection into the abdominal cavity – would be easier and more effective.

The challenge for researchers has been finding the right kind of nanoparticles – ones that, when administered systemically in clinically appropriate doses, accumulate in the tumor well enough to allow the AMF to heat cancer cells to death.

Olena Taratula and Oleh Taratula of the OSU College of Pharmacy tackled the problem by developing nanoclusters, multiatom collections of nanoparticles, with enhanced heating efficiency. The nanoclusters are hexagon-shaped iron oxide nanoparticles doped with cobalt and manganese and loaded into biodegradable nanocarriers.

There had been many attempts to develop nanoparticles that could be administered systemically in safe doses and still allow for hot enough temperatures inside the tumor,” said Olena Taratula, associate professor of pharmaceutical sciences. “Our new nanoplatform is a milestone for treating difficult-to-access tumors with magnetic hyperthermia. This is a proof of concept, and the nanoclusters could potentially be optimized for even greater heating efficiency.”

Findings were published in ACS Nano.

Source: https://today.oregonstate.edu/