Induced PluriPotent Stem Cells

Some of the first trials to test whether reprogrammed stem cells can repair diseased organs have begun to report positive results. Research teams involved in the studies, all based in Japan, say they provide early hints that the hotly anticipated technology works. But many researchers outside the country are cautious about overstating the significance of the trials, saying they were small and the results have yet to be peer reviewed.

Induced pluripotent stem (iPS) cells are those that have been reprogrammed from mature cells — often taken from the skin — into an embryonic-like state. From there, they can then turn into any cell type and be used to repair damaged organs.

In January, researchers reported in a preprint1 that the first person in Japan given a transplant of heart-muscle cells made from reprogrammed stem cells had experienced improved heart function following the procedure. Then, in April, another group announced that several people’s vision had improved after their diseased corneas were transplanted with corneal cells made from reprogrammed stem cells — a world first.

Ongoing trials are “delivering encouraging first insights into the evolution of iPS-cell-based therapies, from lab to patient”, says Wolfram-Hubertus Zimmermann, a pharmacologist at the University Medical Centre Göttingen in Germany.

The biggest impact of the iPS-cell trials in Japan so far is that they “give people confidence all over the world that it is doable”, says Kapil Bharti, a translational stem-cell researcher at the US National Eye Institute in Bethesda, Maryland.

The iPS-cell field is hugely popular in Japan, in large part because it was a local scientist, Shinya Yamanaka at Kyoto University, who discovered how to make the cells. Expectations for the potential uses of iPS cells soared in 2012, when Yamanaka won the medicine Nobel prize for his 2006 discovery. In 2013, the Japanese government announced that it would pour ¥110 billion (US$814 million today) over the next ten years into regenerative medicine.

In that time, Japanese scientists have launched at least ten trials in people. These have largely shown that the technology is safe, but have yet to establish that it has a beneficial effect. Now, public enthusiasm has waned, which threatens future government funding, says Masayo Takahashi, an ophthalmologist and president of the cell-therapy company Vision Care in Kobe, Japan.

iPS-cell technology has only been around for 16 years. And bringing it into clinical testing has happened unbelievably fast,” says Zimmermann. “The challenge is that this is all happening under high public attention.”


The Science Of BioPrinting a Human Heart

A company called Biolife4D has developed the technology to print human cardiac tissue by collecting blood cells from a patient and converting these cells to a type of stem cell called Induced Pluripotent Stem (iPS) cells. The technology could eventually be used to create thousands of much-needed hearts for transplantation.

What we’re working on is literally bioprinting a human heart viable for transplantation out of a patient’s own cells, so that we’re not only addressing the problem with the lack of [organ] supply, but by bioengineering the heart out of their own cells, we’re eliminating the rejection,Biolife4D CEO Steven Morris said during an appearance on Digital Trends Live, referring to the body’s impulse to reject a transplanted organ.

It starts with a patient’s own cells and ends with a 3D bioprinted heart that’s a precise fit and genetic match. The BIOLIFE4D bioprinted organ replacement process begins with a magnetic resonance imaging (MRI) procedure used to create a detailed three-dimensional image of a patient’s heart. Using this image, a computer software program will construct a digital model of a new heart for the patient, matching the shape and size of the original.

A “bio-ink” is created using the specialized heart cells combined with nutrients and other materials that will help the cells survive the bioprinting processHearts created through the BIOLIFE4D bioprinting process start with a patient’s own cells. Doctors safely take cells from the patient via a blood sample, and leveraging recent stem cell research breakthroughs, BIOLIFE4D plans to reprogram those blood cells and convert them to create specialized heart cells.

Bioprinting is done with a 3D bioprinter that is fed the dimensions obtained from the MRI. After printing, the heart is then matured in a bioreactor, conditioned to make it stronger and readied for patient transplant.