mRNA Vaccine to Prevent Colorectal Cancer Recurrence

The COVID-19 vaccines mark the first widespread use of mRNA technology. They work by using synthetic genetic code to instruct the patient’s cells to recognize the coronavirus and activate the immune system against the virus. But researchers began exploring how to use mRNA vaccines as a new way to treat cancer long before this technology was used against the coronavirus.

A B-cell displaying antibodies created in response to foreign protein fragments produced from a personalized mRNA vaccine recognizes a colorectal cancer cell and signals killer T-cells to destroy it

We’ve known about this technology for a long time, well before COVID-19,” says Van Morris, M.D. Here, he explains how mRNA vaccines work and how a team of MD Anderson colorectal cancer experts led by Scott Kopetz, M.D., Ph.D., are testing the technology in a Phase II clinical trial, following high-risk patients with stage II or stage III colorectal cancer who test positive for circulating tumor DNA after surgery.

The presence of circulating tumor DNA is checked with a blood test. “If there is ctDNA present, it can mean that a patient is at higher risk for the cancer coming back,” Morris says. The opposite can also be true: if there is not circulating tumor DNA present, the patient may have a lower risk of recurrence, he adds.

In the Phase II clinical trial, enrolled patients start chemotherapy after the tumor is surgically removed. Tissue from the tumor is sent off to a specialized lab, where it’s tested to look for genetic mutations that fuel the cancer’s growth. Morris explains anywhere from five to 20 mutations specific to that patient’s tumor can be identified during testing. The mutations are then prioritized by the most common to the least common, and an mRNA vaccine is created based on that ranking. “Each patient on the trial receives a personalized mRNA vaccine based on their individual mutation test results from their tumor.

As with the COVID-19 vaccines, the mRNA instructs the patient’s cells to produce protein fragments based off tumor’s genetic mutations identified during testing. The immune system then searches for other cells with the mutated proteins and clears out any remaining circulating tumor cells.We’re hopeful that with the personalized vaccine, we’re priming the immune system to go after the residual tumor cells, clear them out and cure the patient,” says Morris.

Source: https://www.mdanderson.org/

Moderna to Trial HIV and Flu Vaccines With mRNA Technology

The astonishing success of COVID-19 vaccines may signal a breakthrough in disease prevention technologyModerna is developing influenza and HIV vaccines using mRNA technology, the backbone of its effective COVID-19 vaccine. The biotech company is expected to launch phase 1 trials for its mRNA flu and HIV vaccines this year. If successful, mRNA may offer a silver lining to the decades-long fight against HIV, influenza, and other autoimmune diseases. Traditional vaccines often introduce a weakened or inactive virus to one’s body. In contrast, mRNA technology uses genetic blueprints, which build proteins to train the immune system to fight off the virus. Since mRNA teaches the body to recognize a virus, it can be effective against multiple strains or variants as opposed to just one.

The mRNA platform makes it easy to develop vaccines against variants because it just requires an update to the coding sequences in the mRNA that code for the variant,”  said Rajesh Gandhi, MD, an infectious diseases physician at Massachusetts General Hospital and chair of HIV Medicine association.

Future mRNA vaccines have the potential to ward off multiple diseases with one shot, according to the Centers for Disease Control and Prevention (CDC).  Current mRNA vaccines, as demonstrated in their use against COVID-19, already appear to be less susceptible to new variants. “Based on its success in protecting against COVID-19, I am hopeful that mRNA technology will revolutionize our ability to develop vaccines against other pathogens, like HIV and influenza,” Gandhi says.

Moderna’s flu and HIV vaccines are still in early development stages, having yet to undergo their clinical trials. Still, if they prove successful, the mRNA-based treatment could dramatically change health care — both in expediting the route to immunity and by providing a solution to illnesses that have been around for decades. Scientists currently make annual alterations to the typical flu shot to keep up with the viruses in circulation. But a successful mRNA vaccine could provide a far more effective alternative.

An approved mRNA flu vaccine could be administered every other year rather than annually, explained virologist Andrew Pekosz, PhD. This is because mRNA accounts for variants and produces a stronger and longer-lasting immune response than that of the current flu vaccine, he says. The influenza vaccine is similar to the COVID-19 vaccine because the viruses have similar characteristics and necessary treatments, according to Pekosz.

However, a potential concern lies in the level of public immunity prior to receiving a vaccine. Since the flu has been around since the early 1900s, an mRNA vaccine could potentially boost older or less effective antibody responses rather than targeting current strains, Pekosz adds. “There’s no way to answer that question except to do some clinical trials, and see what the results tell us”.

Source: https://www.verywellhealth.com/

Holistic Immune Response Against Covid-19

Researchers say it’s the first real look at exactly what types of “red flags” the human body uses to enlist the help of T cells—killers the immune system sends out to destroy infected cells. Until now, COVID vaccines have focused on activating a different type of immune cell, B cells, which are responsible for creating antibodies. Developing vaccines to activate the other arm of the immune system—the T cells—could dramatically increase immunity against coronavirus, and importantly, its variants.

As reported in the journal Cell, the researchers say current vaccines might lack some important bits of viral material capable of triggering a holistic immune response in the human body.

Companies should reevaluate their vaccine designs,” says Mohsan Saeed, a virologist at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL) and co-corresponding author of the paper.

Saeed, an assistant professor of biochemistry at the School of Medicine, performed experiments on human cells infected with coronavirus. He isolated and identified those missing pieces of SARS-CoV-2 proteins inside one of the NEIDL’s Biosafety Level 3 (BSL-3) labs.

This was a big undertaking because many research techniques are difficult to adapt for high containment levels [such as BSL-3],” Saeed says. “The overall coronavirus research pipeline we’ve created at the NEIDL, and the support of our entire NEIDL team, has helped us along the way.”

Saeed got involved when computational geneticists Pardis Sabeti and Shira Weingarten-Gabbay contacted him. They hoped to identify fragments of SARS-CoV-2 that activate the immune system’s T cells.

The emergence of viral variants, an active area of research in my lab, is a major concern for vaccine development,” says Sabeti, a leader in the Broad Institute’s Infectious Disease and Microbiome Program. She is also a Harvard University professor of systems biology.

We swung into full action right away because my laboratory had [already] generated human cell lines that could be readily infected with SARS-CoV-2,” Saeed says. The group’s efforts were spearheaded by two members of the Saeed lab: Da-Yuan Chen, a postdoctoral associate, and Hasahn Conway, a lab technician.

Source:  https://www.futurity.org/

Junk food linked to gut inflammation

Eating a Western diet impairs the immune system in the gut in ways that could increase risk of infection and inflammatory bowel disease, according to a study from researchers at Washington University School of Medicine in St. Louis and Cleveland Clinic.

The study, in mice and people, showed that a diet high in sugar and fat causes damage to Paneth cells, immune cells in the gut that help keep inflammation in check. When Paneth cells aren’t functioning properly, the gut immune system is excessively prone to inflammation, putting people at risk of inflammatory bowel disease and undermining effective control of disease-causing microbes. The findings, published in Cell Host & Microbe, open up new approaches to regulating gut immunity by restoring normal Paneth cell function.

A tiny, 3D model of the intestines formed from anti-inflammatory cells known as Paneth cells (green and red) and other intestinal cells (blue) is seen in the image above. Researchers at Washington University School of Medicine in St. Louis and Cleveland Clinic used such models, called organoids, to understand why a Western-style diet rich in fat and sugar damages Paneth cells and disrupts the gut immune system

Inflammatory bowel disease has historically been a problem primarily in Western countries such as the U.S., but it’s becoming more common globally as more and more people adopt Western lifestyles,” said lead author Ta-Chiang Liu, MD, PhD, an associate professor of pathology & immunology at Washington University. “Our research showed that long-term consumption of a Western-style diet high in fat and sugar impairs the function of immune cells in the gut in ways that could promote inflammatory bowel disease or increase the risk of intestinal infections.”

Paneth cell impairment is a key feature of inflammatory bowel disease. For example, people with Crohn’s disease, a kind of inflammatory bowel disease characterized by abdominal pain, diarrhea, anemia and fatigue, often have Paneth cells that have stopped working.

Source: https://medicine.wustl.edu/

Self-Assembling Nanofibers Prevent Damage from Inflammation

Biomedical engineers at Duke University have developed a self-assembling nanomaterial that can help limit damage caused by inflammatory diseases by activating key cells in the immune system. In mouse models of psoriasis, the nanofiber-based drug has been shown to mitigate damaging inflammation as effectively as a gold-standard therapy. One of the hallmarks of inflammatory diseases, like rheumatoid arthritis, Crohn’s disease and psoriasis, is the overproduction of signaling proteins, called cytokines, that cause inflammation. One of the most significant inflammatory cytokines is a protein called TNF. Currently, the best treatment for these diseases involves the use of manufactured antibodies, called monoclonal antibodies, which are designed to target and destroy TNF and reduce inflammation.

Although monoclonal antibodies have enabled better treatment of inflammatory diseases, the therapy is not without its drawbacks, including a high cost and the need for patients to regularly inject themselves. Most significantly, the drugs also have uneven efficacy, as they may sometimes not work at all or eventually stop working as the body learns to make antibodies that can destroy the manufactured drug. To circumvent these issues, researchers have been exploring how immunotherapies can help teach the immune system how to generate its own therapeutic antibodies that can specifically limit inflammation.

The graphic shows the peptide nanofiber bearing complement protein C3dg (blue) and key components of the TNF protein, which include B-cell epitopes (green), and T-cell epitopes (purple)

We’re essentially looking for ways to use nanomaterials to induce the body’s immune system to become an anti-inflammatory antibody factory,” said Joel Collier, a professor of biomedical engineering at Duke University. “If these therapies are successful, patients need fewer doses of the therapy, which would ideally improve patient compliance and tolerance. It would be a whole new way of treating inflammatory disease.”

In their new paper, which appeared online in the Proceedings of the National Academy of Sciences (PNAS), Collier and Kelly Hainline, a graduate student in the Collier lab, describe how novel nanomaterials could assemble into long nanofibers that include a specialized protein, called C3dg. These fibers then were able to activate immune system B-cells to generate antibodies. “C3dg is a protein that you’d normally find in your body,” said Hainline. “The protein helps the innate immune system and the adaptive immune system communicate, so it can activate specific white blood cells and antibodies to clear out damaged cells and destroy antigens.”

Due to the protein’s ability to interface between different cells in the immune system and activate the creation of antibodies without causing inflammation, researchers have been exploring how C3dg could be used as a vaccine adjuvant, which is a protein that can help boost the immune response to a desired target or pathogen.

Source: https://pratt.duke.edu/

How to Stop Allergies and Autoimmune Disease

We found this absolutely fascinating mechanism of our own bodies that stops the production of rogue antibodies that can cause either autoimmunity or allergies,” senior author, ANU Professor Carola Vinuesa, said. “It’s been known for years that neuritin has a role in the brain and in the nervous system but we found an abundance of neuritin in the immune system and its mechanism – which has never been described in biology. “We have shown it is one of our immune system’s own mechanisms to prevent autoimmunity and allergy and now we have the evidence, we can go on to harness that for treatment.”

The researchers say they set out over five years ago to bridge a knowledge gap on how the immune system works following an educated guess that neuritin might have a regulatory function in stopping allergies and autoimmune disease.

The study, published today in Cell, found neuritin can prevent the production of pathogenic antibodies.

It is an incredible discovery. We saw that in the absence of neuritin there is increased susceptibility to death from anaphylaxis, highlighting its role in the prevention of life-threatening allergies,” first author, ANU researcher Dr Paula Gonzalez Figueroa, said.

For people with allergies, when the immune system overreacts to allergens – like pollen, dust or peanut butter – it produces antibodies called Immunoglobulin E, (IgE). Allergies happen when the body produces excessive IgE in response to otherwise harmless substances, leading to the release of histamine that causes allergic reactions. “We have discovered neuritin prevents excessive formation of IgE that is typically associated with some common forms of allergy and food intolerances,” Professor Vinuesa said.

Many autoimmune diseases are caused or exacerbated by antibodies that go on to destroy our own tissues and cause autoimmune diseases like lupus and rheumatoid arthritis. “There are over 80 autoimmune diseases, in many of them we find antibodies that bind to our own tissues and attack us instead of targeting pathogens – viruses and bacteria,” Dr Paula Gonzalez-Figueroa said. “We found neuritin supresses formation of rogue plasma cells which are the cells that produce harmful antibodies.”

The researchers hope the discovery will now form the basis of new treatments.

Source: https://www.anu.edu.au/

How to Reverse Parkinson’s Symptoms

Grafting neurons grown from monkeys’ own cells into their brains relieved the debilitating movement and depression symptoms associated with Parkinson’s disease, researchers at the University of Wisconsin–Madison (UW) reported today.

In a study published in the journal Nature Medicine, the UW team describes its success with neurons made from induced pluripotent stem cells from the monkeys’ own bodies. This approach avoided complications with the primates’ immune systems and takes an important step toward a treatment for millions of human Parkinson’s patients.

This result in primates is extremely powerful, particularly for translating our discoveries to the clinic,” says UW–Madison neuroscientist Su-Chun Zhang, whose lab grew the brain cells.

Parkinson’s disease damages neurons in the brain that produce dopamine, a brain chemical that transmits signals between nerve cells. The disrupted signals make it progressively harder to coordinate muscles for even simple movements and cause rigidity, slowness and tremors that are the disease’s hallmark symptoms. Patients — especially those in earlier stages of Parkinson’s — are typically treated with drugs like L-DOPA to increase dopamine production.

Those drugs work well for many patients, but the effect doesn’t last,” says Marina Emborg, a Parkinson’s researcher at UW–Madison’s Wisconsin National Primate Research Center. “Eventually, as the disease progresses and their motor symptoms get worse, they are back to not having enough dopamine, and side effects of the drugs appear.”

Scientists have tried with some success to treat later-stage Parkinson’s in patients by implanting cells from fetal tissue, but research and outcomes were limited by the availability of useful cells and interference from patients’. Zhang’s lab has spent years learning how to dial donor cells from a patient back into a stem cell state, in which they have the power to grow into nearly any kind of cell in the body, and then redirect that development to create neurons.

The idea is very simple,” Zhang says. “When you have stem cells, you can generate the right type of target cells in a consistent manner. And when they come from the individual you want to graft them into, the body recognizes and welcomes them as their own.

Source: https://news.wisc.edu/

New Variant of SARS-CoV-2 Spreading Fast

A coronavirus variant called B1525 has become one of the most recent additions to the global variant watch list and has been included in the list of variants under investigation by Public Health England.

Scientists are keeping a watchful eye on this variant because it has several mutations in the gene that makes the spike protein – the part of the virus that latches onto human cells. These changes include the presence of the increasingly well-known mutation called E484K, which allows the virus to partly evade the immune system, and is found in the variants first identified in South Africa (B1351) and Brazil (P1).

While there is no information on what this means for B1525, there is growing evidence that E484K may impact how effective COVID vaccines are. But there is no suggestion so far that B1525 is more transmissible or that it leads to more severe disease.

There are other mutations in B1525 that are also noteworthy, such as Q677H. Scientists have repeatedly detected this changeat least six times in different lineages in the US, suggesting that it gives the virus an advantage, although the nature of any benefit has not been identified yet.

The B1525 variant also has several deletions – where “letters” (G, U, A and C) of the virus’s RNA are missing from its genome. These letters are also missing in B117, the variant first detected in Kent, England. Research by Ravindra Gupta, a clinical microbiologist at the University of Cambridge, found that these deletions may increase infectivity twofold in laboratory experiments.

As with many variants, B1525 appears to have emerged quite recently. The earliest example in the shared global database of coronavirus genomes, called Gisaid, dates from 15 December 2020. It was identified in a person in the UK. And like many variants, B1525 had already travelled the world before it came to global attention. A total of 204 sequences of this variant in Gisaid can be traced to 18 countries as of 20 February 2021.

Source: https://theconversation.com/

Katalin Kariko, RNA Hero, Future Nobel Prize

The development of the Pfizer-BioNTech coronavirus vaccine, the first approved jab in the West, is the crowning achievement of decades of work for Hungarian biochemist Katalin Kariko, who fled to the US from communist rule in the 1980s.

When trials found the Pfizer-BioNTech coronavirus vaccine to be safe and 95 percent effective in November, it was the crowning achievement of Katalin Kariko’s 40 years of research on the genetic code RNA (ribonucleic acid). Her first reaction was a sense of “redemption,” Kariko told The Daily Telegraph.

I was grabbing the air, I got so excited I was afraid that I might die or something,” she said from her home in Philadelphia. “When I am knocked down I know how to pick myself up, but I always enjoyed working… I imagined all of the diseases I could treat.”

Born in January 1955 in a Christian family in the town of Szolnok in central Hungary – a year before the doomed heroism of the uprising against the Soviet-backed communist regimeKariko grew up in nearby Kisujszellas on the Great Hungarian Plain, where her father was a butcher. Fascinated by science from a young age, Kariko began her career at the age of 23 at the University of Szeged’s Biological Research Centre, where she obtained her PhD.

It was there that she first developed her interest in RNA. But communist Hungary’s laboratories lacked resources, and in 1985 the university sacked her. Consequently, Kariko looked for work abroad, getting a job at Temple University in Philadelphia the same year. Hungarians were forbidden from taking money out of the country, so she sold the family car and hid the proceeds in her 2-year-old daughter’s teddy bear. “It was a one-way ticket,” she told Business Insider. “We didn’t know anybody.”

Not everything went as planned after Kariko’s escape from communism. At the end of the 1980s, the scientific community was focused on DNA, which was seen as the key to understanding how to develop treatments for diseases such as cancer. But Kariko’s main interest was RNA, the genetic code that gives cells instructions on how to make proteins.

At the time, research into RNA attracted criticism because the body’s immune system sees it as an intruder, meaning that it often provokes strong inflammatory reactions. In 1995, Kariko was about to be made a professor at the University of Pennsylvania, but instead she was consigned to the rank of researcher.

Usually, at that point, people just say goodbye and leave because it’s so horrible,” Kariko told medical publication Stat. She went through a cancer scare at the time, while her husband was stuck in Hungary trying to sort out visa issues. “I tried to imagine: Everything is here, and I just have to do better experiments,” she continued. Kariko was also on the receiving end of sexism, with colleagues asking her the name of her supervisor when she was running her own lab.

Kariko persisted in the face of these difficulties. “From outside, it seemed crazy, struggling, but I was happy in the lab,” she told Business Insider. “My husband always, even today, says, ‘This is entertainment for you.’ I don’t say that I go to work. It is like play.” Thanks to Kariko’s position at the University of Pennsylvania, she was able to send her daughter Susan Francia there for a quarter of the tuition costs. Francia won gold on the US rowing team in the 2008 and 2012 Olympics.

It was a serendipitous meeting in front of a photocopier in 1997 that turbocharged Kariko’s career. She met immunologist Drew Weissman, who was working on an HIV vaccine. They decided to collaborate to develop a way of allowing synthetic RNA to go unrecognised by the body’s immune system – an endeavour that succeeded to widespread acclaim in 2005. The duo continued their research and succeeded in placing RNA in lipid nanoparticles, a coating that prevents them from degrading too quickly and facilitates their entry into cells.

The researchers behind the Pfizer-BioNTech and Moderna jabs used these techniques to develop their vaccines.

Source: https://www.france24.com/

COVID: the Risk of Death is 70% Higher for Male than for Female Patients

Evidence increasingly indicates that male sex is a risk factor for more severe disease and death from COVID-19. Male bias in COVID-19 mortality is observed in nearly all countries with available sex-disaggregated data, and the risk of death in males is ∼1.7 times higher than in females. Aging is strongly associated with higher risk of death in both sexes, but at all ages above 30 years, males have a significantly higher mortality risk, rendering older males the most vulnerable group. Sex differences are intertwined with differences in gender roles socially and with behavioral factors, which also influence COVID-19 incidence and outcomes. However, there are also possible biological mechanisms of male sex bias that affect the severity of COVID-19, particularly with respect to immune responses.

Sex differences beyond sex organs are present across species and extend to physiological systems, including the immune system. Infection by different pathogens results in differential immune responses and disease outcomes by sex, and although the pattern depends on age and other host factors, male sex is more often associated with lower immune responses and higher susceptibility and/or vulnerability to infections in animals. This is generally also the case in humans: Male patients have higher viral loads for hepatitis B virus (HBV) and HIV. Conversely, females generally mount a more robust immune response to vaccines, such as influenza vaccines. However, the heightened immune responses in females can also lead to detrimental immunopathology in infections.

The physiological response to virus infection is initiated when virus replication is detected by pattern recognition receptors. This leads to two antiviral programs by the infected cells.
Source: https://science.sciencemag.org/