A Single Drop of Blood Can Reveal Stress Hormones

A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood.

Cortisol and other stress hormones regulate many aspects of our physical and mental health, including sleep quality. High levels of cortisol can result in poor sleep, which increases stress that can contribute to panic attacks, heart attacks and other ailments.

Currently, measuring cortisol takes costly and cumbersome laboratory setups, so the Rutgers-led team looked for a way to monitor its natural fluctuations in daily life and provide patients with feedback that allows them to receive the right treatment at the right time.

The researchers used the same technologies used to fabricate computer chips to build sensors thinner than a human hair that can detect biomolecules at low levels. They validated the miniaturized device’s performance on 65 blood samples from patients with rheumatoid arthritis.

The use of nanosensors allowed us to detect cortisol molecules directly without the need for any other molecules or particles to act as labels,” said lead author Reza Mahmoodi, a postdoctoral scholar in the Department of Electrical and Computer Engineering at Rutgers University-New Brunswick.

With technologies like the team’s new microchip, patients can monitor their hormone levels and better manage chronic inflammation, stress and other conditions at a lower cost, said senior author Mehdi Javanmard, an associate professor in RutgersDepartment of Electrical and Computer Engineering.

Our new sensor produces an accurate and reliable response that allows a continuous readout of cortisol levels for real-time analysis,” he added. “It has great potential to be adapted to non-invasive cortisol measurement in other fluids such as saliva and urine. The fact that molecular labels are not required eliminates the need for large bulky instruments like optical microscopes and plate readers, making the readout instrumentation something you can measure ultimately in a small pocket-sized box or even fit onto a wristband one day.”

The study included Rutgers co-author Pengfei Xie, a Ph.D. student, and researchers from the University of Minnesota and University of Pennsylvania. The research was funded by the DARPA ElectRX program.

The study appears in the journal Science Advances.

Source: https://www.rutgers.edu/

Diabetics die 3 times more of Covid-19

From the outset of the pandemic, data coming out of early coronavirus hot spots like China, Italy, and New York City foretold that certain groups of people would be more vulnerable to Covid-19. The disease hit older people and people with underlying medical conditions the hardest. As early as February, diabetes had emerged as one of the conditions associated with the highest risk. In one large study out of China, people with diabetes were more than three times as likely to die of Covid-19 than the overall population.

But that’s not what brought four diabetes experts from Australia and the United Kingdom onto a Zoom call back in April. They were supposed to just be catching up—a virtual tea among friends. But talk soon turned to something strange that they’d been seeing in their own hospitals and hearing about through the grapevine. The weird thing was that people were showing up in Covid-19 wards, after having tested positive for the virus, with lots of sugar in their blood. These were people with no known history of diabetes. But you wouldn’t know it from their lab results.

After that call, the experts reached out to colleagues in other countries to see if they’d seen or heard of similar cases. They had. Acute viral infections of all sorts can stress the body, causing blood sugar levels to rise. So that in itself wasn’t unusual, says Francesco Rubino, a bariatric surgeon and diabetes researcher at King’s College in London, who was on that first Zoom call. “What we were seeing and hearing was a little bit different.”

Doctors around the world had described to him strange situations in which Covid-19 patients were showing symptoms of diabetes that didn’t fit the typical two-flavor manifestation of the disease. In most people with type 1 diabetes, their immune cells suddenly turn traitorous, destroying the cells in the pancreas that produce insulin—the hormone that allows glucose to exit the bloodstream and enter cells. People with type 2 diabetes have a different problem; their body slowly becomes resistant to the insulin it does produce. Rubino and his colleagues were seeing blended features of both types showing up spontaneously in people who’d recently been diagnosed with Covid-19.

That was the first clinical puzzle,” he says. For clues to an explanation, Rubino and his colleagues looked to ACE2, the protein receptor that SARS-CoV-2 uses to invade human cells. It appears in the airways, yes, but also in other organs involved in controlling blood sugar, including the gut. Doctors in China discovered copies of the coronavirus in the poop of their Covid-19 patients. And a meta-analysis found that gastrointestinal symptoms plague one out of 10 Covid-19 sufferers.

In the last few decades, scientists have discovered that the gut is not the passive digestive organ once thought. It actually is a major endocrine player—responsible for producing hormone signals that talk to the pancreas, telling it to make more insulin, and to the brain, ordering it to make its owner stop eating. If the coronavirus is messing with these signals, that could provide a biological basis for why Covid-19 would be associated with different forms of diabetes, including hybrid and previously unknown manifestations of the disease. Rubino is one of a growing number of researchers who think that the relationship between the coronavirus and diabetes is actually a two-way street. Having diabetes doesn’t just tip the odds toward contracting a worse case of Covid-19. In some people, the virus might actually trigger the onset of diabetes, and the potential for a lifetime of having to manage it.

Source: https://www.wired.com/

How To Replace Artificial Chemicals With Natural Silk Protein In Skin Care

Most consumers are unaware of the potentially harmful chemicals that can be found in skin care products and on clothingArtificial ingredients such at parabens, which are used to prolong the shelf-life of a skin care product, have been linked to hormone and fertility damage. Formaldehyde, also used as a preservative in skin care products, is a known carcinogen. Formaldehyde is also an additive used on some clothing to prevent wrinkles and stains.
Now a small company outside of Boston aims to lead to effort to replace artificial chemicals with natural silk protein in both skin care products and textiles.
Evolved By Nature, based in Medford, Massachusetts, is applying modern biotechnology to centuries-old silk to create activated silk.

Activated silk is really us taking silk all the way back to the natural state that silk is found in in the silkworm,” described Evolved By Nature Co-founder and President Beck Lacouture.
“We are taking silk protein and unlocking its potential, using the different regions of the silk to our benefit,” she said.
The process of activating the silk requires nothing more than salt, water and heat, no added chemicals.
We remove all contaminants, so we’re left with just the protein and fiber form,” said Evolved By Nature Co-founder and CEO Greg Altman.syrupy mi
Inside the laboratory, the cocoons spun from silkworms are washed to remove its natural sticky outer coating, dried, and dissolved in salt water. The brown, syrupy mix is then purified by the removal of salt. And what’s left is pure, liquid, silk protein or activated silk. It can be used in a variety of skin care and clothing products.

Source: https://www.itnnews.lk/