Robotic Guided Coronary Intervention

University Hospitals Galway (UHG) in Ireland has carried out the first Robotic Guided Coronary Intervention. The innovative procedure combines the benefits of coronary intervention with the precision of robotics, offering a range of benefits to patients. The new technology is used in stent procedures to relieve blockages in the arteries of the heart. It allows for greater precision in positioning stents, allowing the Interventional Cardiologists to move the stent a millimetre at a time.

It also allows the medical team to have an enhanced, close up view of the angiographic images and information during the entire procedure. The scientific breakthrough allows Interventional Cardiologists to use the robot as an extension of their own hand, allowing for robotic precision and details visualization when positioning of guide catheters, guidewires and balloon/stent catheters.

Robotic innovation has come a long way in the last decade. And we in Galway are delighted to have performed the first Robotic Guided Coronary Intervention in Ireland and the UK.”, said Prof Faisal Sharif, who carried out the first procedure in UHG. The Consultant Cardiologist welcomed the addition of the CorPath Robotic Angioplasy as a game changer.

The main advantage of robotics is that it is safe and very precise in stent placement. It allows the accurate placement for up to 1mm at a time,” he said. The use of robotics in the procedure will also benefit staff, reducing their exposure to radiation. “Traditionally, the coronary stent placement procedure is performed in the Cardiac Cath Lab resulting in staff  exposure to radiation. The second main advantage of using Robotics is the  reduction in radiation exposure for the staff.”

We recently successfully completed the first case and going forward we will be performing these procedures regularly,” added Prof Sharif.

Source: https://www.saolta.ie/

Sticker on the Skin Provides Clear Image of Heart, Lungs

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound wands and probes to direct sound waves into the body. These waves reflect back out to produce high-resolution images of a patient’s heart, lungs, and other deep organs.

Currently, ultrasound imaging requires bulky and specialized equipment available only in hospitals and doctor’s offices. But a new design by MIT engineers might make the technology as wearable and accessible as buying Band-Aids at the pharmacy. In a paper appearing today in Science, the engineers present the design for a new ultrasound sticker — a stamp-sized device that sticks to skin and can provide continuous ultrasound imaging of internal organs for 48 hours.

The researchers applied the stickers to volunteers and showed the devices produced live, high-resolution images of major blood vessels and deeper organs such as the heart, lungs, and stomach. The stickers maintained a strong adhesion and captured changes in underlying organs as volunteers performed various activities, including sitting, standing, jogging, and biking. The current design requires connecting the stickers to instruments that translate the reflected sound waves into images. The researchers point out that even in their current form, the stickers could have immediate applications: For instance, the devices could be applied to patients in the hospital, similar to heart-monitoring EKG stickers, and could continuously image internal organs without requiring a technician to hold a probe in place for long periods of time.

If the devices can be made to operate wirelessly — a goal the team is currently working toward — the ultrasound stickers could be made into wearable imaging products that patients could take home from a doctor’s office or even buy at a pharmacy.

We envision a few patches adhered to different locations on the body, and the patches would communicate with your cellphone, where AI algorithms would analyze the images on demand,” says the study’s senior author, Xuanhe Zhao, professor of mechanical engineering and civil at MIT. “We believe we’ve opened a new era of wearable imaging: With a few patches on your body, you could see your internal organs.

The study also includes lead authors Chonghe Wang and Xiaoyu Chen, and co-authors Liu Wang, Mitsutoshi Makihata, and Tao Zhao at MIT, along with Hsiao-Chuan Liu of the Mayo Clinic in Rochester, Minnesota.

Source: https://news.mit.edu/

Synthetic Neurons

Synthetic neurons made of hydrogel could one day be used in sophisticated artificial tissues to repair organs such as the heart or the eyes. Hagan Bayley at the University of Oxford and his colleagues devised a synthetic material that can act in a similar way to a human neuron. Made from hydrogel, the artificial neurons are about 0.7 millimetres across ­– about 700 times wider than a human neuron, but similar to giant axons found in squid. They can also be made up to 25 millimetres long, which is similar in length to a human optic nerve running from the eye to the brain.
When a light is shone on the synthetic neuron, it activates proteins that pump hydrogen ions into the cell. These positively charged ions then move through the neuron, carrying an electrical signal. The speed of transmission was too fast to measure with the team’s equipment and is probably faster than the rate in natural neurons, says Bayley. When the positive charge reaches the tip of the neuron, it makes adenosine triphosphate (ATP) – a neurotransmitter chemicalmove from one water droplet to another. In future work, the researchers hope to make the synthetic neuron interact with another via an ATP signal, just as neurons connect with each other at synapses.
The team bundled seven of the neurons together to work in parallel as a synthetic nerve. “This allows us to send multiple signals simultaneously,” says Bayley. “They can all have very different frequencies and so it’s a very versatile signal.” The main purpose is to send different pieces of information down the same pathway, he says.

Artificial nerve cells made from biocompatible materials have been made in a lab for the first time. The innovation may one day be used in synthetic tissues to repair organs such as the heart or the eyes. 

However, the artificial neurons still have a long way to go. Unlike real neurons, there is no mechanism to recycle and create new neurotransmitters in the synthetic system. The neurons therefore only work for a few hours, says Bayley. “The more you do science, the more you find out how clever science is by virtue of evolution.” Alain Nogaret at the University of Bath in the UK says the innovation could play a major role in improving neuro-implants such as artificial retinas by the end of the decade. “The emulation of nervous activity in soft materials is a major step towards non-invasive brain-machine interfaces and solutions addressing neurodegenerative disease.”

Bayley hopes to eventually use these synthetic neurons to deliver different types of drugs simultaneously to treat wounds more quickly and precisely. “Using light, we could maybe release drug molecules in a patterned way,” he says.
Source: https://www.nature.com/ 
AND
https://www.scientiststudy.com/

Gene Therapy for Heart Arrhythmias

One possible treatment option for cardiac arrhythmias are approaches that enhance electrical excitability and action potential conduction in the heart. One way this could be done is by stably overexpressing mammalian voltage-gated sodium channels. However, the channels’ large size precludes delivery via viral vectors. Now, researchers have demonstrated a gene therapy that helps heart muscle cells electrically activate in live mice. The first demonstration of its kind, the approach features engineered bacterial genes that code for sodium ion channels and could lead to therapies to treat a wide variety of electrical heart diseases and disorders.

This detailed image of a single mouse heart muscle cell shows its cell membrane expressing the new sodium ion channel genes (magenta) after researchers delivered the therapy through an injection into the mouse veins

We were able to improve how well heart muscle cells can initiate and spread electrical activity, which is hard to accomplish with drugs or other tools,” said Nenad Bursac, PhD, professor of biomedical engineering at Duke University. “The method we used to deliver genes in heart muscle cells of mice has been previously shown to persist for a long time, which means it could effectively help hearts that struggle to beat as regularly as they should.”

The platform“utilizes small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico.”

Several years ago, members of the lab mutated bacterial genes so that the channels they encode could become active in human cells. In this new work, Tianyu Wu, doctoral student, further optimized the content of the genes and combined them with a promoter that exclusively restricts channel production to heart muscle cells.

We worked to find where the sodium ion channels were actually formed, and, as we hoped, we found that they only went into the working muscle cells of the heart within the atria and ventricles,” Wu said. “We also found that they did not end up in the heart cells that originate the heartbeat, which we also wanted to avoid.”

As a proof of concept, tests on cells suggested that the treatment improves electrical excitability enough to prevent human abnormalities like arrhythmias. More specifically, the work showed that “the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures.

The work is published in Nature Communications, in the paper, Engineered bacterial voltage-gated sodium channel platform for cardiac gene therapy.”

Source: https://pratt.duke.edu/
AND
https://www.genengnews.com/

Smart Clothing

There’s no need to don uncomfortable smartwatches or chest straps to monitor your heart if your comfy shirt can do a better job. That’s the idea behind “smart clothing” developed by a Rice University lab, which employed its conductive nanotube thread to weave functionality into regular apparel.

The Brown School of Engineering lab of chemical and biomolecular engineer Matteo Pasquali reported in the American Chemical Society journal Nano Letters that it sewed nanotube fibers into athletic wear to monitor the heart rate and take a continual electrocardiogram (EKG) of the wearer. The fibers are just as conductive as metal wires, but washable, comfortable and far less likely to break when a body is in motion, according to the researchers. On the whole, the shirt they enhanced was better at gathering data than a standard chest-strap monitor taking live measurements during experiments. When matched with commercial medical electrode monitors, the carbon nanotube shirt gave slightly better EKGs.

Rice University graduate student Lauren Taylor shows a shirt with carbon nanotube thread that provides constant monitoring of the wearer’s heart

The shirt has to be snug against the chest,” said Rice graduate student Lauren Taylor, lead author of the study. “In future studies, we will focus on using denser patches of carbon nanotube threads so there’s more surface area to contact the skin.”

Source: https://news.rice.edu/

Active Cardiac Inflammation in 60% Of Covid Patients

Two German studies published today in JAMA Cardiology show abnormal heart imaging findings in recently recovered COVID-19 patients, and cardiac infections in those who have died from their infections.

The first, an observational cohort study, involved 100 unselected coronavirus patients identified from the University Hospital Frankfurt COVID-19 Registry from April to June, 57 risk factor-matched patients, and 50 healthy volunteers. Cardiac magnetic resonance (CMR) imaging revealed heart involvement in 78 patients and active cardiac inflammation in 60, independent of underlying conditions, disease severity, overall course of illness, and time from diagnosis to CMR.

Thirty-three of 100 patients required hospitalization. Detectable levels of high-sensitivity troponin were found in 71 COVID-19 patients, while significantly elevated levels were detected in five patients. Recovered COVID-19 patients had lower left ventricular ejection fraction, higher left ventricle volumes, higher left ventricle mass, and elevated native T1 and T2 than controls, all indicating heart dysfunction. Seventy-eight coronavirus patients had abnormal CMR findings, including 73 with raised myocardial native T1, 60 with raised myocardial native T2, 32 with myocardial late gadolinium enhancement, and 22 with pericardial enhancement, all signs of heart damage. Biopsy of the heart muscle in patients with serious findings showed ongoing immune-mediated inflammation.

The study authors noted that while most coronavirus research has focused on short-term respiratory complications, particularly in critically ill patients, mounting evidence suggests that COVID-19 has a significant impact on the cardiovascular system by worsening heart failure in patients with preexisting cardiac diseases. In this study, CMR revealed several kinds of heart abnormalities, each of which can be tied to underlying dysfunction and worse outcomes, the authors said. They added that their study also showed that direct tissue characterization with mapping measures on CMR is the most sensitive and clinically relevant way to detect early heart disease.

While left and right ventricular ejection fraction were significantly reduced, there was a large overlap between patients recently recovered from COVID-19 and both control groups, demonstrating that volumes and function are inferior markers of disease detection,” they wrote.

The second study involved the autopsies of 39 COVID-19 patients conducted from Apr 8 to 18. Pathologists from the Legal Medicine at the University Medical Center Hamburg Eppendorf identified evidence of the COVID-19–causing SARSCoV-2 virus—but not clinically relevant inflammation of the heart muscle—in 24 cadavers (61.5%), 16 (41.0%) of which had high loads of viral RNA.

Of the 24 cadavers with heart infections, a cytokine response panel showed that expression of six pro-inflammatory genes was higher in the 16 with high viral loads than in the 8 with low viral loads. But there were no signs of a massive influx of inflammatory cells into the heart muscle or tissue death in either group. Cause of death was listed as pneumonia in 35 cases (89.7%), while the other four (10.2%) died of necrotizing fasciitis, cardiac decompensation with previous heart failure, bacterial bronchitis, or unknown causes. The most common underlying illnesses were coronary artery disease (32 [82.0%]), high blood pressure (17 [43.6%]), and diabetes (7 [17.9%]). Median patient age was 85 years, and 23 of 39 patients (59%) were women.

Overt fulminant myocarditis has been reported in isolated patients with SARS-CoV-2 infection,” the authors wrote. “However, the current data indicate that the presence of SARS-CoV-2 in cardiac tissue does not necessarily cause an inflammatory reaction consistent with clinical myocarditis.”

Source: https://www.cidrap.umn.edu/

Gene Therapy Combats Efficiently Age-related Diseases

As we age, our bodies tend to develop diseases like heart failure, kidney failure, diabetes, and obesity, and the presence of any one disease increases the risk of developing others. In traditional drug development, a drug usually only targets one condition, largely ignoring the interconnectedness of age-related diseases, such as obesity, diabetes, and heart failure, and requiring patients to take multiple drugs, which increases the risk of negative side effects.

A new study from the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard Medical School (HMS) reports that a single administration of an adeno-associated virus (AAV)-based gene therapy delivering combinations of three longevity-associated genes to mice dramatically improved or completely reversed multiple age-related diseases, suggesting that a systems-level approach to treating such diseases could improve overall health and lifespan. The research is reported in PNAS.

The AAV-based gene therapy improved the function of the heart and other organs in mice with various age-related diseases, suggesting that such an approach could help maintain health during aging.

The results we saw were stunning, and suggest that holistically addressing aging via gene therapy could be more effective than the piecemeal approach that currently exists,” said first author Noah Davidsohn, Ph.D., a former Research Scientist at the Wyss Institute and HMS who is now the Chief Technology Officer of Rejuvenate Bio. “Everyone wants to stay as healthy as possible for as long as possible, and this study is a first step toward reducing the suffering caused by debilitating diseases.

The study was conducted in the lab of Wyss Core Faculty member George Church, Ph.D. as part of Davidsohn’s postdoctoral research into the genetics of aging. Davidsohn, Church, and their co-authors honed in on three genes that had previously been shown to confer increased health and lifespan benefits when their expression was modified in genetically engineered mice: FGF21, sTGFβR2, and αKlotho. They hypothesized that providing extra copies of those genes to non-engineered mice via gene therapy would similarly combat age-related diseases and confer health benefits.

The team created separate gene therapy constructs for each gene using the AAV8 serotype as a delivery vehicle, and injected them into mouse models of obesity, type II diabetes, heart failure, and renal failure both individually and in combination with the other genes to see if there was a synergistic beneficial effect.

Source; https://wyss.harvard.edu/

Battery-free Pacemakers Powered By A Patient’s Heartbeat

A new device powered by the heart could finally solve the pacemaker problem. Some 1.5 million Americans have pacemakers implanted to keep their hearts beating steadily. The devices are life-saving, but they don’t last forever. Currently, most pacemaker batteries have to be replaced every five to 12 years, and doing so means invasive surgery each time. Researchers at the National Key Laboratory for Science and Technology in Shanghai, China have developed a tiny device that piggybacks off the heart itself to generate energy – meaning a pacemaker battery would never have to be replaced.

A healthy heart can keep time for itself, by way of an internal pacemaker called the sinus node in the upper right chamber. It fires off an electrical charge some 60 to 100 times a minute, and that electrical energy sets off a series of contractions of heart muscle which in turn pumps blood throughout the body. But as the heart ages or once it becomes diseased, the sinus node takes a hit, too, and may fail to keep the heart beating in time or at all. Fortunately, since the late 1950s, we’ve been able to substitute a small, implantable, battery-powered device to send these electrical signals once the heart can’t any more. Even 60 years later, however, we haven’t figured out what to do about the device’s power supply, however.

Surgery to place the pacemaker and wires that feed its electrical pulses to the heart is complex, requiring doctors to open the chest cavity. The pacemaker itself is tucked away in a ‘pocket’ much closer to the skin surface. Once the battery runs out, usually only a local anesthetic is required to remove the old device and put a new, fully charged one.  Still, the procedure is an unpleasant hassle that comes with a risk of infection, and it’s expensive to have done. Depending on the pacemaker, the device itself may cost anywhere from $19,000 to $96,000, according to Costhelper – and that doesn’t include the expenses for the operation.

But the new Chinese-developed device shows promise to end the procedure.  The new pacemaker accessory can actually harness the heart’s beats to power a pacemaker. The key to innovation is its flexible plastic frame, which allows the device to capture more energy from the heart than previous hard cases have done. At the device’s center are layers of piezoelectric material, which generates power whenever it is bent. Many materials acquire an electrical charge when force is applied to them, including natural ones in our bodies. Crystals, DNA and even bone are capable of capturing electrical energy. The trick is to apply enough force to a piezoelectric material, then supercharge it, because, on their own, these materials don’t work up all that much energy.

Scientists have long been looking to piezoelectricity as an elegant solution to recapturing otherwise wasted energy, and some have even applied it to the pacemaker before. But, previously, other researchers have not been able to create a device that bends enough to generate sufficient power. Now, the Chinese scientists have shown their device can fuel a pacemaker and keep a pig’s heart beating. The devices frame allows it to flex significantly with as little movement as is created by a heartbeat. While the pacemaker itself is implanted in its usual place, near the collar bone and just under the skin, the new power device is tucked underneath the heart, where the organ’s contractions bend it rhythmically.  In tests in pigs, the new pacemaker generated just as much power as a pacemaker, using a completely renewable energy source.

Source: http://pubs.acs.org/
AND
https://www.dailymail.co.uk/