Transplanted Follicles Better Heal Wounds

The best Band-Aids could be sprouting from your scalp, a new study suggests. British researchers say hair follicles may have wound-healing properties, with the potential to avoid lifelong scars that can be damaging to one’s confidence.

The study out of Imperial College London reports that scars treated with hair follicle transplants began to act similarly to uninjured skin, generating new cells, blood vessels, gene expression, and even restoring itself through collagen.

Around 100 million people per year acquire scars in high-income countries alone, primarily as a result of surgeries. The global incidence of scars is much higher and includes extensive scarring formed after burn and traumatic injuries. Our work opens new avenues for treating scars and could even change our approach to preventing them,” says Dr Francisco Jiménez, lead hair transplant surgeon at the Mediteknia Clinic and Associate Research Professor at University Fernando Pessoa Canarias, in Gran Canaria, Spain, in a statement.

Scar tissue in the skin lacks hair, sweat glands, blood vessels and nerves, which are all needed for proper regulation of body temperature, as well as pain and overall sensory detection. Scarring can also disrupt movement ability, thus inducing stress and discomfort for someone.

You must be logged in to view this content.

How to Grow Fully Functioning Hair Follicles

We can add functional mouse hair follicles to body parts that scientists have successfully grown in the lab, outside the body. Using cells obtained from embryonic mice, for the first time researchers were able to produce hair follicle organoidssmall, simple versions of an organ – that grew hair.

Moreover, they were able to influence the pigmentation of the hair; and, when the follicles were transplanted into living hairless mice, they continued to function across multiple hair growth cycles. This research, the team says, could help aid efforts to treat hair loss, as well as provide alternative models to animal testing and drug screening.

You must be logged in to view this content.

All People With Blue Eyes Have A Single, Common Ancestor

According to the Cleveland Clinic, up until some 10,000 years ago, it’s believed everyone in the world had brown eyes. Now, an estimated 8-10% of people in the world have blue eyes. How did that come to be? As it turns out, researchers now believe blue eyes all started with a single person who passed on a genetic mutation that spread across the world. In other words, everyone with blue eyes shares a single, common ancestor.

Back in 2008, researchers with the University of Copenhagen examined the exact genetic mutation that resulted in blue eyes all those years ago. Their research was published in the The Journal of Human Genetics. According to Science Daily, the study’s lead author, Professor Hans Eiberg, explained that humans originally had brown eyes, and a gene mutationturned off” the ability to produce brown eyes – resulting in some people having blue eyes. The press release elaborated that the affected gene, the OCA2 gene, regulates brown pigment in the eyes. If the OCA2 gene had been completely destroyed or “turned off” then the affected humans would be without any melanin in their hair, eyes, or skin color (a condition known as albinism). But with the specific mutation, the body has a limited ability to produce melanin in the iris, resulting in a blue iris, rather than a brown iris. The genetic mutation isn’t a positive or negative trait.

Mutations can affect things like freckles, balding patterns, hair color, and more“. “It simply shows that nature is constantly shuffling the human genome, creating a genetic cocktail of human chromosomes and trying out different changes as it does so,” explained Eiberg.

According to the College of Physicians of Philadelphia, researchers studied the mitochondrial DNA of individuals with blue eyes from various countries, such as Jordan, Denmark, and Turkey. The researchers found that over 97% of the blue-eyed people in the study shared a single haplotype – a grouping of genomic variants that are usually inherited. Because of this, researchers believe that the mutation is passed on genetically, meaning that everyone with blue eyes is related.

From this, we can conclude that all blue-eyed individuals are linked to the same ancestor. They inherited the same switch at the same spot in their DNA,” said Eidberg in a press release, shared in EurekaAlerta!,

Source: https://blog.thebreastcancersite.greatergood.com

Microneedle Patch reverses Balding

Although some people say that baldness is the “new sexy,” for those losing their hair, it can be distressing. An array of over-the-counter remedies are available, but most of them don’t focus on the primary causes: oxidative stress and insufficient circulation. Now, researchers reporting in ACS Nano have designed a preliminary microneedle patch containing cerium nanoparticles to combat both problems, regrowing hair in a mouse model faster than a leading treatment.

The most common hair loss condition is called androgenic alopecia, also known as male- or female- pattern baldness. Hair loss is permanent for people with the condition because there aren’t enough blood vessels surrounding the follicles to deliver nutrients, cytokines and other essential molecules. In addition, an accumulation of reactive oxygen species in the scalp can trigger the untimely death of the cells that form and grow new hair. Previously, Fangyuan Li, Jianqing Gao and colleagues determined that cerium-containing nanoparticles can mimic enzymes that remove excess reactive oxygen species, which reduced oxidative stress in liver injuries, wounds and Alzheimer’s disease. However, these nanoparticles cannot cross the outermost layer of skin. So, the researchers wanted to design a minimally invasive way to deliver cerium-containing nanoparticles near hair roots deep under the skin to promote hair regrowth.

As a first step, the researchers coated cerium nanoparticles with a biodegradable polyethylene glycol-lipid compound. Then they made the dissolvable microneedle patch by pouring a mixture of hyaluronic acid — a substance that is naturally abundant in human skin — and cerium-containing nanoparticles into a mold. The team tested control patches and the cerium-containing ones on male mice with bald spots formed by a hair removal cream. Both applications stimulated the formation of new blood vessels around the mice’s hair follicles. However, those treated with the nanoparticle patch showed faster signs of hair undergoing a transition in the root, such as earlier skin pigmentation and higher levels of a compound found only at the onset of new hair development. These mice also had fewer oxidative stress compounds in their skin. Finally, the researchers found that the cerium-containing microneedle patches resulted in faster mouse hair regrowth with similar coverage, density and diameter compared with a leading topical treatment and could be applied less frequently. Microneedle patches that introduce cerium nanoparticles into the skin are a promising strategy to reverse balding for androgenetic alopecia patients, the researchers say.

Source: https://www.acs.org/

Carbon Dots from Human Hair Boost Solar Cells

In a study published in the Journal of Materials Chemistry A, the researchers led by Professor Hongxia Wang in collaboration with Associate Professor  Prashant Sonar  of the Queensland University of technology  (QUT) in Australia  showed the carbon nanodots could be used to improve the performance of perovskites solar cells, a relatively new photovoltaic technology, are seen as the best PV candidate to deliver low-cost, highly efficient solar electricity in coming years. They have proven to be as effective in power conversion efficiency as the current commercially available monocrystalline silicon solar cells, but the hurdles for researchers in this area is to make the technology cheaper and more stable. Unlike silicon cells, they are created with a compound that is easily manufactured, and as they are flexible they could be used in scenarios such as solar-powered clothing, backpacks that charge your devices on the go and even tents that could serve as standalone power sources.

This is the second major piece of research to come as a result of a human hair derived carbon dots as multifunctional material. Last year, Associate Professor Prashant Sonar led a research team, including Centre for Materials Science research fellow Amandeep Singh Pannu, that turned hair scraps into carbon nanodots by breaking down the hairs and then burning them at 240 degrees celsius. In that study, the researchers showed the carbon dots could be turned into flexible displays that could be used in future smart devices.

In this new study, Professor Wang’s research team, including Dr Ngoc Duy Pham,  and Mr Pannu, working with Professor Prashant Sonar’s group, used the carbon nanodots on perovskite solar cells out of curiosity. Professor Wang’s team had previously found that nanostructured carbon materials could be used to improve a cell’s performance. After adding a solution of carbon dots into the process of making the perovskites, Professor Wang’s team found the carbon dots forming a wave-like perovskite layer where the perovskite crystals are surrounded by the carbon dots.

It creates a kind of protective layer, a kind of armour,” Professor Wang said. “It protects the perovskite material from moisture or other environmental factors, which can cause damage to the materials.”

The study found that perovskite solar cells covered with the carbon dots had a higher power conversion efficiency and a greater stability than perovskite cells without the carbon dots.

Source: https://www.qut.edu.au/

How To Create a Spectrum of Natural-looking Hair Colors

We’ve long been warned of the risks of dyeing hair at home and in salons. Products used can cause allergies and skin irritation — an estimated one percent of people have an allergy to dye. Furthermore, repeated use of some dyes has been linked to cancer. But there soon may be a solution for the growing list of salons and hair color enthusiasts searching for natural alternatives to dyes and cosmetics.

Northwestern University researchers have developed a new way to create a spectrum of natural-looking hair colors, ranging from blond to black, by using enzymes to catalyze synthetic melaninMelanin is an enigmatic and ubiquitous material often found in the form of brown or black pigment. Northwestern’s Nathan Gianneschi, the research lead and associate director for the International Institute for Nanotechnology, said every type of organism produces melanin, making it a readily available and versatile material to use in the lab.

Synthetic melanin can create colors ranging from blond to black

In humans, it’s in the back of our eye to help with vision, it’s in our skin to help with protecting skin cells from UV damage,” Gianneschi said. “But birds also use it as a spectacular color display — peacock feathers are made of melanin entirely.”

Gianneschi is Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences and a professor of materials science and engineering and biomedical engineering in Northwestern Engineering. Claudia Battistella, a postdoctoral fellow in Gianneschi’s lab, is the paper’s first author.

The research was published in the journal Chemistry of Materials.

Source: https://www.mccormick.northwestern.edu/

How To Reverse Baldness Using Nanogenerators

Few things on earth strike fear into the hearts of men more profoundly than hair loss. But reversing baldness could someday be as easy as wearing a hat, thanks to a noninvasive, low-cost hair-growth-stimulating technology developed by engineers at the University of Wisconsin–Madison (UW Madison).

I think this will be a very practical solution to hair regeneration,” says Xudong Wang, a professor of materials science and engineering at UW–Madison.

Based on devices that gather energy from a body’s day-to-day motion, the hair-growth technology stimulates the skin with gentle, low-frequency electric pulses, which coax dormant follicles to reactivate hair production. The devices don’t cause hair follicles to sprout anew in smooth skin. Instead they reactivate hair-producing structures that have gone dormant. That means they could be used as an intervention for people in the early stages of pattern baldness, but they wouldn’t bestow cascading tresses to someone who has been as bald as a billiard ball for several years.

Because the devices are powered by the movement of the wearer, they don’t require a bulky battery pack or complicated electronics. In fact, they’re so low-profile that they could be discreetly worn underneath the crown of an everyday baseball cap. Wang is a world expert in the design and creation of energy-harvesting devices. He has pioneered electric bandages that stimulate wound-healing and a weight-loss implant that uses gentle electricity to trick the stomach into feeling full.

The hair-growth technology is based on a similar premise: Small devices called nanogenerators passively gather energy from day-to-day movements and then transmit low-frequency pulses of electricity to the skin. That gentle electric stimulation causes dormant follicles to “wake up.” “Electric stimulations can help many different body functions,” says Wang. “But before our work there was no really good solution for low-profile devices that provide gentle but effective stimulations.”

Wang and colleagues published a description of the technology in the journal ACS Nano.

Source: https://news.wisc.edu/