Cannabis Ingredient to kill meningitis and pneumonia

Cannabidiol (CBD), the main nonpsychoactive ingredient of the cannabis plant, can kill Gram-positive bacteria and, more impressively, Gram-negative bacteria, which excel at antibiotic resistance because they enjoy an extra layer of protection, an outer cell membrane. The ability of CBD to slay Gram-negative bacteria is a new finding, one reported by a team of scientists in Australia. According to the scientists, CBD analogs could constitute the first new class of antibiotics against Gram-negative bacteria that has been developed since the 1960s.

The new finding appeared in the journal Communications Biology, in an article titled, “The antimicrobial potential of cannabidiol.” According to this article, CBD not only killed Gram-positive bacteria such as highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile, it also showed potency against the Gram-negative bacteria Neisseria gonorrhoeae, Neisseria meningitides, Moraxella catarrhalis, and Legionella pneumophila. These Gram-negative bacteria are responsible for sexually transmitted gonorrhea, life-threatening meningitis, airway infections (such as bronchitis and pneumonia), and Legionnaires’ disease, respectively.

Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy,” the authors of the article wrote. “Multiple mode-of-action studies point to membrane disruption as cannabidiol’s primary mechanism.”

The authors included scientists from the University of Queensland in Australia and Botanix Pharmaceuticals. At the University of Queensland’s Centre for Superbug Solutions, scientists led by associate professor Mark Blaskovich, PhD, mimicked a two-week patient treatment in laboratory models to see how fast the bacteria mutated to try to outwit CBD’s killing power.

Cannabidiol showed a low tendency to cause resistance in bacteria even when we sped up potential development by increasing concentrations of the antibiotic during ‘treatment,’” said Blaskovich, the corresponding author of the article in Communications Biology. “We think that cannabidiol kills bacteria by bursting their outer cell membranes, but we don’t know yet exactly how it does that, and we need to do further research.

Source: https://www.genengnews.com/

Genetic Codes Mapping Of 3,000 Dangerous Bacteria

Scientists seeking new ways to fight drug-resistant superbugs have mapped the genomes of more than 3,000 bacteria, including samples of a bug taken from Alexander Fleming’s nose and a dysentery-causing strain from a World War One soldier. The DNA of deadly strains of plague, dysentery and cholera were also decoded in what the researchers said was an effort to better understand some of the world’s most dangerous diseases and develop new ways to fight them. The samples from Fleming – the British scientist credited with discovering the first antibiotic, penicillin, in 1928 – were among more than 5,500 bugs at Britain’s National Collection of Type Cultures (NCTC) one of the world’s largest collections of clinically relevant bacteria. The first bacteria to be deposited in the NCTC was a strain of dysentery-causing Shigella flexneri that was isolated in 1915 from a soldier in the trenches of World War One.

“Knowing very accurately what bacteria looked like before and during the introduction of antibiotics and vaccines, and comparing them to current strains, … shows us how they have responded to these treatments,” said Julian Parkhill of Britain’s Wellcome Sanger Institute who co-led the research. “This in turn helps us develop new antibiotics and vaccines.”

Specialists estimate that around 70 percent of bacteria are already resistant to at least one antibiotic that is commonly used to treat them. This has made the evolution of “superbugs” that can evade one or multiple drugs one of the biggest threats facing medicine today. Among the most serious risks are tuberculosis – which infects more than 10.4 million people a year and killed 1.7 million in 2016 alone – and gonorrhea, a sexually transmitted disease that infects 78 million people a year and which the World Health Organization says is becoming almost untreatable.

Source: https://www.reuters.com/