Cancer Fighting Protein Kills Tumors and Boosts the Body’s Immunity

Tumor cells typically alter their energy metabolism and increase glucose uptake to support their rapid division and spread. This limits glucose availability for immune cells and therefore dampens the body’s anti-cancer immune responseBy searching for proteins that both regulate the metabolism of cancer cells and affect immune cells in tumors, a team led by investigators at Massachusetts General Hospital (MGH) recently identified a potential target for therapies that could simultaneously drain tumors of energy and boost the immune response against them.

For the research, which is published in Cancer Discovery, Keith T. Flaherty, MD, the director of Clinical Research at the MGH Cancer Center and a professor of medicine at Harvard Medical School, and his colleagues developed a new computational tool called BipotentR that can identify targets that block immune activation and also stimulate a second user-defined pathway (in this case, metabolism). When applied to gene expression data from patients with cancer who were treated with immunotherapy, as well as from cell lines and animal models, the tool identified 38 cancer cellspecific immune-metabolic regulators.

Artificial intelligence techniques showed that the activity level of these regulators in tumors predicted patients’ outcomes after receiving immunotherapyThe topmost identified regulator, ESRRA (Estrogen Related Receptor Alpha), was activated in immunotherapy-resistant tumors of many types. Inhibiting ESRAA killed tumors by suppressing energy metabolism and activating two immune mechanisms involving different types of immune cells.The scientists also demonstrated that BipotentR can be applied to other survival mechanisms used by cancer cells, such as their ability to promote blood vessel formation to increase their blood supply. Therefore, BipotentR, available at http://bipotentr.dfci.harvard.edu, provides a resource for discovering single drugs that can act through one cancer-related pathway while simultaneously stimulating an immune response.

Source: https://www.massgeneral.org/
AND
https://www.thebrighterside.news/

Transplanted Follicles Better Heal Wounds

The best Band-Aids could be sprouting from your scalp, a new study suggests. British researchers say hair follicles may have wound-healing properties, with the potential to avoid lifelong scars that can be damaging to one’s confidence.

The study out of Imperial College London reports that scars treated with hair follicle transplants began to act similarly to uninjured skin, generating new cells, blood vessels, gene expression, and even restoring itself through collagen.

Around 100 million people per year acquire scars in high-income countries alone, primarily as a result of surgeries. The global incidence of scars is much higher and includes extensive scarring formed after burn and traumatic injuries. Our work opens new avenues for treating scars and could even change our approach to preventing them,” says Dr Francisco Jiménez, lead hair transplant surgeon at the Mediteknia Clinic and Associate Research Professor at University Fernando Pessoa Canarias, in Gran Canaria, Spain, in a statement.

Scar tissue in the skin lacks hair, sweat glands, blood vessels and nerves, which are all needed for proper regulation of body temperature, as well as pain and overall sensory detection. Scarring can also disrupt movement ability, thus inducing stress and discomfort for someone.

You must be logged in to view this content.

AI Tailors Artificial DNA

With the help of an AI, researchers at Chalmers University of Technology, Sweden, have succeeded in designing synthetic DNA that controls the cells’ protein production. The technology can contribute to the development and production of vaccines, drugs for severe diseases, as well as alternative food proteins much faster and at significantly lower costs than today.

How our genes are expressed is a process that is fundamental to the functionality of cells in all living organisms. Simply put, the genetic code in DNA is transcribed to the molecule messenger RNA (mRNA), which tells the cell’s factory which protein to produce and in which quantities.

You must be logged in to view this content.

5G Is Completely Safe

Two new scientific reviews have backed up all the previous research we’ve seen into 5G technology to date, finding that the next-generation connectivity standard doesn’t pose any health risks.

Overseen by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and Swinburne University of Technology in Australia, the reviews looked back at 138 previous studies and reanalyzed over 100 experiments to look for possible dangers in the millimeter wave frequencies (low-level radio waves above 6 GHz).

While the research and scientific analysis will likely continue, this in-depth look at what we know so far about 5G and its associated technologies points to it being perfectly safe at the kinds of levels that people would be exposed to it.

In conclusion, a review of all the studies provided no substantiated evidence that low-level radio waves, like those used by the 5G network, are hazardous to human health,” says Ken Karipidis, Assistant Director of Assessment and Advice at ARPANSA.

While frequencies above 6 GHz have regularly been used in radar, medical instruments, and security equipment – like the airport screening scanners you have probably walked through – they’re about to be used much more widely as 5G networks get rolled out worldwide.

Combing through the data and the reported results on genotoxicity (mutations), cell proliferation, gene expression, cell signalling, membrane function, and other biological effects, the researchers could findno confirmed evidence that low-level RF fields above 6 GHz such as those used by the 5G network are hazardous to human health“.

Source: https://www.sciencealert.com/

How To Catch Aggressive Prostate Cancer Early

Two newly published studies are presenting novel diagnostic techniques to help catch the most aggressive forms of prostate cancer at an early stage. A University of East Anglia study presents an innovative way to measure gene expression in tumor samples and predict disease severity, while an Australian study details a new kind of imaging technique promising to detect metastasized prostate cancer with greater accuracy than ever before.

Two new techniques are designed to detect aggressive forms of prostate cancer and catch it when it metastasizes

Prostate cancer is the most common cancer in men in the UK,” explains Colin Cooper, lead researcher on a new study from the University of East Anglia. “It usually develops slowly and the majority of cancers will not require treatment in a man’s lifetime. However, doctors struggle to predict which tumors will become aggressive, making it hard to decide on treatment for many men.”

In order to develop a way for doctors to better identify the most aggressive tumors the researchers examined different gene expression patterns in nearly 2,000 prostate tumor samples. Applying a mathematical model called Latent Process Decomposition, the study homed in on a particular pattern of gene expression associated with the most aggressive clinical cases.

The pattern relates to a subtype of cells the team has labeled DESNT, and suggest the more tumor cells in a sample that are of that DESNT subtype, the faster a patient will progress through the disease. The hope is that this can act as a biomarker to stratify prostate cancer patients, identifying those needing more urgent invasive treatments.

If you have a tumor that is majority DESNT you are more likely to get metastatic disease, in other words it is more likely to spread to other parts of your body,” says Daniel Brewer, co-lead researcher on the project. “This is a much better indication of aggressive disease.”

Identifying when prostate cancer has metastasized is obviously of vital importance in guiding treatment. A team of Australian researchers just published the results of a clinical trial evaluating the efficacy of a new imaging technique developed to provide detailed data on the spread of the disease.

Around one in three prostate cancer patients will experience a disease relapse after surgery or radiotherapy,” says Declan Murphy, senior author on the new imaging study. “This is partly because current medical imaging techniques often fail to detect when the cancer has spread, which means some men are not given the additional treatments they need.”

Source: https://newatlas.com/

Reverse biological aging

In a small clinical trial, scientists were looking for a means to restore the thymus — the gland that forms and releases key immune cells. By doing so, they actually managed to reverse various aspects of biological aging. The thymus gland, located between the lungs, is the organ within which T cells — a critical population of immune cells — mature. This gland also has a peculiarity. After a person reaches puberty, it begins a process of involution, which means that it becomes less and less active and starts to shrink in size gradually. Studies have shown that thymic involution affects the size of immune cell populations related to it, possibly causing changes to biological mechanisms when people reach their 60s.

Prof. Steve Horvath from the University of California Los Angeles School of Public Health and colleagues initially set out to see if they could restore function in the aging thymus.

Thymic involution leads to the depletion of critical immune cell populations, […] and is linked to age‐related increases in cancer incidence, infectious disease, autoimmune conditions, generalized inflammation, atherosclerosis, and all‐cause mortalit,” he explains In the study paper recently published in the journal Aging Cell.

For the reasons outlined above, the researchers organized and conducted what they believe is a first-of-its-kind clinical trial: TRIIM (Thymus Regeneration, Immunorestoration, and Insulin Mitigation). The study took place between 2015–2017, and the researchers were pleased with the results they achieved. They found that it was possible to restore thymic function and reduce the risk of age-related conditions and diseases linked to poor immune system reaction.

They also had a pleasant surprise. At the end of the trial, the researchers found that the mix of drugs they used to restore the thymus gland had also reversed other aspects of biological aging. A person’s biological age refers not to how old they are in conventional years, but to how much their biological mechanisms have aged, according to their epigenetic clocksmarkers that indicate how changes in various cellular mechanisms have affected gene expression.

For their trial, Prof. Horvath and team recruited 10 healthy adult males aged 51–65. The researchers were able to use and analyze data collected from nine of these individuals. In the first week of the clinical trial, the researchers gave the participants recombinant human growth hormone (rhGH). In its natural state, rhGH supports many different aspects of cellular health, such as cell growth and regeneration. Previous studies — some conducted in animals, and others with the participation of individuals with HIV — have uncovered evidence that rhGH could help restore thymus function, as well as immune system effectiveness. 

Source: https://onlinelibrary.wiley.com/
A
ND
https://www.medicalnewstoday.com/

Hypothalamic Stem Cells May Reverse The Human Ageing Process

A study published in the Nature Journal by Dongsheng Cai, Albert Einstein College of Medicine, New York, talks about how stem cells, that determines how fast aging occurs in the body, can help reverse the human ageing process. Stem cells reside in Hypothalamus, a pea-sized part of the brain that contains a bundle of neurons. It is responsible for a wide array of growth, development, digestion, reproduction, and metabolism related processes in the body. As the human body starts to age, these neural stem cells in the body begins to deteriorate and accelerates the human ageing process. So, if you stop these stem cells from wearing away, you can possibly stop the human body from ageing.

The lab tests were conducted on mice, where it was observed that as the mice grew 10 months or older, the stem cells begin to deplete (earlier than the usual time for stem cells to deteriorate in mice). By the time, these mice turn two years and older, the stem cells start to disappear, causing death. However, to prove their hypothesis that stem cells deterioration truly accelerates the ageing process, scientists ‘artificially disrupted’ the stem cells in middle-aged mice, and observed that it significantly grew their rate of ageing.

Once the hypothesis that stem cells depletion leads to accelerated ageing was proved, scientists further injected the hypothalamic stem cells into the brains of older and middle-aged mice, where a sudden decrease in their ageing process was observed. This happens because the hypothalamic stem cells release molecules called microRNAs (miRNAs) which play an important role in regulation of gene expression. These miRNAs (which are bundled inside tiny particles called exosomes) released by the stem cells were then further injected into the cerebrospinal fluid of mice.

After this experiment, the ageing process significantly slowed down, in terms of tissue analysis and behavioral analysis where different changes in animals’ muscle endurance, coordination, social behavior and cognitive ability also showed signs of anti-ageing. Scientists are now looking into exploring the study further and analyze other factors related to microRNAs that might be responsible for the anti-ageing miracle!

Source: https://www.nature.com/
AND
https://in.mashable.com/