Gel-like Implant Destroys Pancreatic Cancer

Biomedical engineers at Duke University have demonstrated the most effective treatment for pancreatic cancer ever recorded in mouse models. While most mouse trials consider simply halting growth a success, the new treatment completely eliminated tumors in 80 percent of mice across several model types, including those considered the most difficult to treat.

The approach combines traditional chemotherapy drugs with a new method for irradiating the tumor. Rather than delivering radiation from an external beam that travels through healthy tissue, the treatment implants radioactive iodine-131 directly into the tumor within a gel-like depot that protects healthy tissue and is absorbed by the body after the radiation fades away.

You must be logged in to view this content.

Gel Treats Gum Disease by Fighting Inflammation

A topical gel that blocks the receptor for a metabolic byproduct called succinate treats gum disease by suppressing inflammation and changing the makeup of bacteria in the mouth, according to a new study led by researchers at NYU College of Dentistry and published in Cell ReportsThe research, conducted in mice and using human cells and plaque samples, lays the groundwork for a non-invasive treatment for gum disease that people could apply to the gums at home to prevent or treat gum disease.

Gum disease (also known as periodontitis or periodontal disease) is one of the most prevalent inflammatory diseases, affecting nearly half of adults 30 and older. It is marked by three components: inflammation, an imbalance of unhealthy and healthy bacteria in the mouth, and destruction of the bones and structures that support the teeth. Uncontrolled gum disease can lead to painful and bleeding gums, difficulty chewing, and tooth loss.

You must be logged in to view this content.

New Lab-Made Cartilage to Rebuild Your Knees Efficiently

Over-the-counter pain relievers, physical therapy, steroid injections — some people have tried it all and are still dealing with knee pain. Often knee pain comes from the progressive wear and tear of cartilage known as osteoarthritis, which affects nearly one in six adults — 867 million people — worldwide. For those who want to avoid replacing the entire knee joint, there may soon be another option that could help patients get back on their feet fast, pain-free, and stay that way.

Writing in the journal Advanced Functional Materials, a Duke University-led team says they have created the first gel-based cartilage substitute that is even stronger and more durable than the real thing. Mechanical testing reveals that the Duke team’s hydrogel — a material made of water-absorbing polymers — can be pressed and pulled with more force than natural cartilage, and is three times more resistant to wear and tearImplants made of the material are currently being developed by Sparta Biomedical and tested in sheep. Researchers are gearing up to begin clinical trials in humans next year.

Duke researchers have developed a gel-based cartilage substitute to relieve achy knees that’s even stronger and more durable than the real thing. Clinical trials to start next year

If everything goes according to plan, the clinical trial should start as soon as April 2023,” said Duke chemistry professor Benjamin Wiley, who led the research along with Duke mechanical engineering and materials science professor Ken Gall.

To make this material, the Duke team took thin sheets of cellulose fibers and infused them with a polymer called polyvinyl alcohol — a viscous goo consisting of stringy chains of repeating molecules — to form a gel. The cellulose fibers act like the collagen fibers in natural cartilage, Wiley said — they give the gel strength when stretched. The polyvinyl alcohol helps it return to its original shape. The result is a Jello-like material, 60% water, which is supple yet surprisingly strong.

Natural cartilage can withstand a whopping 5,800 to 8,500 pounds per inch of tugging and squishing, respectively, before reaching its breaking point. Their lab-made version is the first hydrogel that can handle even more. It is 26% stronger than natural cartilage in tension, something like suspending seven grand pianos from a key ring, and 66% stronger in compression — which would be like parking a car on a postage stamp. “It’s really off the charts in terms of hydrogel strength,” Wiley said.

The team has already made hydrogels with remarkable propertiesIn 2020, they reported that they had created the first hydrogel strong enough for knees, which feel the force of two to three times body weight with each step.

Source: https://today.duke.edu/
AND
https://www.spartabiomedical.com/

Injectable Electroactive “Microbots” Heal Broken Bones

Inspired by the growth of bones in the skeleton, researchers at the universities of Linköping in Sweden and Okayama in Japan have developed a combination of materials that can morph into various shapes before hardening. The material is initially soft, but later hardens through a bone development process that uses the same materials found in the skeleton…

When we are born, we have gaps in our skulls that are covered by pieces of soft connective tissue called fontanelles. It is thanks to fontanelles that our skulls can be deformed during birth and pass successfully through the birth canal. Post-birth, the fontanelle tissue gradually changes to hard bone. Now, researchers have combined materials which together resemble this natural process.

We want to use this for applications where materials need to have different properties at different points in time. Firstly, the material is soft and flexible, and it is then locked into place when it hardens. This material could be used in, for example, complicated bone fractures. It could also be used in microrobots – these soft microrobots could be injected into the body through a thin syringe, and then they would unfold and develop their own rigid bones”, says Edwin Jager, associate professor at the Department of Physics, Chemistry and Biology (IFM) at Linköping University.

The idea was hatched during a research visit in Japan when materials scientist Edwin Jager met Hiroshi Kamioka and Emilio Hara, who conduct research into bones. The Japanese researchers had discovered a kind of biomolecule that could stimulate bone growth under a short period of time. Would it be possible to combine this biomolecule with Jager’s materials research, to develop new materials with variable stiffness?

In the study published in Advanced Materials, the researchers constructed a kind of simple “microrobot”, one which can assume different shapes and change stiffness. The researchers began with a gel material called alginate. On one side of the gel, a polymer material is grown. This material is electroactive, and it changes its volume when a low voltage is applied, causing the microrobot to bend in a specified direction. On the other side of the gel, the researchers attached biomolecules that allow the soft gel material to harden. These biomolecules are extracted from the cell membrane of a kind of cell that is important for bone development. When the material is immersed in a cell culture medium – an environment that resembles the body and contains calcium and phosphor – the biomolecules make the gel mineralise and harden like bone.

One potential application of interest to the researchers is bone healing. The idea is that the soft material, powered by the electroactive polymer, will be able to manoeuvre itself into spaces in complicated bone fractures and expand. When the material has then hardened, it can form the foundation for the construction of new bone. In their study, the researchers demonstrate that the material can wrap itself around chicken bones, and the artificial bone that subsequently develops grows together with the chicken bone.

Source: https://liu.se/