How to Suck up Carbon Pollution

Scientists have set out a way to suck planet-heating carbon pollution from the air, turn it into sodium bicarbonate and store it in oceans, according to a new paper. The technique could be up to three times more efficient than current carbon capture technology, say the authors of the study, published Wednesday in the journal Science Advances.

Tackling the climate crisis means drastically reducing the burning of fossil fuels, which releases planet-heating pollution. But because humans have already pumped so much of this pollution into the atmosphere and are unlikely to sufficiently reduce emissions in the near term, scientists say we also need to remove it from the airNature does this – forests and oceans, for example, are valuable carbon sinks – but not quickly enough to keep pace with the amounts humans are producing. So we have turned to technology.

One method is to capture carbon pollution directly at the source, for example from steel or cement plants. But another way, which this study focuses on, is “direct air capture.” This involves sucking carbon pollution directly out of the atmosphere and then storing it, often by injecting it into the ground. The problem with direct air capture is that while carbon dioxide may be a very potent planet-heating gas, its concentrations are very small – it makes up about 0.04% of air. This means removing it directly from the air is challenging and expensive.

“It’s a “significant hurdle,” Arup SenGupta, a professor at Lehigh University and a study author. Even the biggest facilities can only remove relatively small amounts and it costs several hundred dollars to remove each ton of carbonClimeworks’ direct air removal project in Iceland is the largest facility, according to the company, and can capture up to 4,000 tons of carbon dioxide a year. That’s equivalent to the carbon pollution produced by fewer than 800 cars over a year. The new technique laid out in the study can help tackle those problems, said SenGupta. The team have used copper to modify the absorbent material used in direct air capture. The result is an absorbent “which can remove CO2 from the atmosphere at ultra-dilute concentration at a capacity which is two to three times greater than existing absorbents,” SenGupta said. This material can be produced easily and cheaply and would help drive down the costs of direct air capture, he added. Once the carbon dioxide is captured, it can then be turned into sodium bicarbonatebaking soda – using seawater and released into the ocean at a small concentration.

The oceansare infinite sinks,” SenGupta explained. “If you put all the CO2 from the atmosphere, emitted every day – or every year – into the ocean, the increase in concentration would be very, very minor.” Gupta’s idea is that direct air capture plants can be located offshore, giving them access to abundant amounts of seawater for the process.

Source: https://www.science.org/
AND
https://edition.cnn.com/

Little Algae Bioreactor Removes As Much Carbon Dioxide as 4000m2 of Trees

Algae could play a surprising role in the fight against climate change. A.I.-focused technology firm Hypergiant Industries announced a machine that uses the aquatic organisms to sequester carbon dioxide. Algae, the company claims, is “one of nature’s most efficient machines.” By pairing it with a machine learning system, its developers hope to make these talents even more effective. That’s not all. The team claims the device, which measures three feet (90 centimeters) on each side and seven feet (2,1 meters) tall, can sequester as much carbon as a whole acre (4000 square meters) of trees — estimated somewhere around two tons.

We’ve been thinking about climate change solutions in only a very narrow scope,” Ben Lamm, CEO of the Austin-based firm, said. “Trees are part of the solution but there are so many other biological solutions that are useful. Algae is much more effective than trees at reducing carbon in the atmosphere, and can be used to create carbon negative fuels, plastics, textiles, food, fertilizer and much more.”
It’s not the only ambitious idea in the works at the six-division Hypergiant Industries. Its Galactic division is aiming to build a multi-planetary internet by using satellites as relays. Last month, it took the wraps off a prototype Iron Man-like helmet that could aid search and rescue teams. The company, founded last year, counts Bill Nye and astronaut Andy Allen among its advisory board members.

Hypergiant’s algae-powered bioreactor is the sort of idea that could be needed now more than ever. Despite a push to greener technologies, global annual carbon emissions rose in 2018 to hit an all-time high of 37.1 billion tonnes. That’s after two years of a relative plateau between 2014 and 2016. This has resulted in a global climate shift, where 2018 was the fourth-hottest year on record. Several countries, including the United Kingdom, have pledged to reach net-zero emissions by 2050.

Research has shown that restoring forests by an area the size of the United States could cut carbon dioxide in the atmosphere by a staggering 25 percent, reaching levels not seen for a century. While planting trees could play an important role in the pushback, alternative solutions like carbon capture and storage and new sequestering technologies could also help remove carbon from the atmosphere.

Algae, Hypergiant Industries explains, needs three elements for growth: light, water, and carbon dioxide. The machine monitors factors like light, available carbon dioxide, temperature and more to maximize the amount sequestered by the algae.

One Eos Bioreactor sequesters the same amount of carbon from the atmosphere as an entire acre of trees,” Lamm says. “With enough Eos devices, we could make whole cities carbon-neutral or even negative, and at a rate that is so much faster than that of trees. That’s the dream: breathable, livable cities for everyone and right now.”

When the algae consumes carbon dioxide, it produces biomass. The company has suggested that this biomass could be used in a number of applications, like making oils or cosmetics. A smart city could take the biomass and use it for fuels. The machine is small enough to fit inside office buildings, and Lamm tells FastCompany that the initial prototype it’s currently operating can attach to a building’s HVAC system to clean the air inside.