First Cultivated Meat Approved By The FDA

A major milestone is currently underway in the realm of cultivated meat. Food scientists have spent decades of research and development crafting new meat to tackle the increasing demand for this produce, reduce environmental degradation, and support animal welfare (via CNN). Now, one company is swiftly on its way to producing some of the country's first cultured protein. Following its first pre-market consultation, the FDA has evaluated the safety of cultivated chicken created by Upside Foods and confirmed that there are no further questions at this time.

You must be logged in to view this content.

‘Drug Factory’ Implants Could Eliminate Specific Lung Cancer

Rice University and Baylor College of Medicine researchers have shown they can seradicate advanced-stage mesothelioma tumor in mice in just a few days with a treatment combining Rice’s cytokinedrug factoryimplants and a checkpoint inhibitor drug.

The researchers administered the drug-producing beads, which are no larger than the head of a pin, next to tumors where they could produce continuous, high doses of interleukin-2 (IL-2), a natural compound that activates white blood cells to fight cancer. The study, published online today in Clinical Cancer Research, is the latest in a string of successes for the drug-factory technology invented in the lab of Rice bioengineer Omid Veiseh, including Food and Drug Administration (FDAapproval to begin clinical trials of the technology this fall in ovarian cancer patients.

From the beginning, our objective was to develop a platform therapy that can be used for multiple different types of immune system disorders or different types of cancers,” said Rice graduate student Amanda Nash, who spent several years developing the implant technology with study co-lead author Samira Aghlara-Fotovat, a fellow student in Veiseh’s lab.

The cytokine factories consist of alginate beads loaded with tens of thousands of cells that are genetically engineered to produce natural IL-2, one of two cytokines the FDA has approved for treatment of cancer. The factories are just 1.5 millimeters wide and can be implanted with minimally invasive surgery to deliver high doses of IL-2 directly to tumors. In the mesothelioma study, the beads were placed beside tumors and inside the thin layer of tissue known as the pleura, which covers the lungs and lines the interior wall of the chest.

I take care of patients who have malignant pleural mesothelioma,” said Dr. Bryan Burt, professor and chief of Baylor’s Division of Thoracic Surgery in the Michael E. DeBakey Department of Surgery. “This is a very aggressive malignancy of the lining of the lungs. And it’s very hard to treat completely by surgical resection. In other words, there is often residual disease that is left behind. The treatment of this residual disease with local immunotherapy — the local delivery of relatively high doses of immunotherapy to that pleural space — is a very attractive way to treat this disease.”

Veiseh said the mesothelioma study began when Burt and Baylor surgeon and associate professor Dr. Ravi Ghanta heard about the early results of ovarian cancer animal tests Veiseh’s team was conducting with collaborators at the University of Texas MD Anderson Cancer Center. In March, Veiseh and MD Anderson collaborators published a study showing IL-2-producing beads could eradicate advanced-stage ovarian and colorectal tumors in mice in less than a week.

They were really impressed by the preclinical data we had in ovarian cancer,” Veiseh said of Burt and Ghanta. “And they asked the question, ‘Could we actually leverage the same system for mesothelioma?’

Source: https://blogs.bcm.edu/

No More Glasses for Blurry Vision

New eye drops can limit the use for reading glassesVuity has just been approved by the Food and Drug Administration (FDA), and local ophthalmologists say it can be a life-changerThe drops are meant for people dealing with Presbyopia, an age-related eye issue that causes blurry vision

We all know the reading glasses are annoying,” said Dr. Ella Faktorovich, an ophthalmologist with Pacific Vision Institute. “Within 15 minutes you can see your computer, you can see your phone so you can really improve the range of vision. I think it is huge.” She says the drops target the focusing mechanism in the eye. The drops shrink the pupils and increase focus on theeye.

There are many kinds of this medicine in trials, but this is the first to be approved,” she said. “It is pretty remarkable.” It can help people like Lovester Law, who is currently writing a book. He says he spends hours looking at a screen to write“After I read too much or write to long, I just have to close my eyes and relax,” he explained.

“If we live long enough our eyes are going to age, they are not going to be like they used to be.” People who want the drops will have to consult an eye doctor, because they are only available through a prescription. Doctors at UCSF say this breakthrough can be a catalyst for future eye treatment. The data we have shows that it really really works,” stated Julie Schallhorn, Associate Professor of ophthalmology at UCSF. “It is an exciting time to be in this field, and an exciting time for our patients.

The FDA approval of VUITY was based on data from two pivotal phase 3 clinical studies, GEMINI 1 and GEMINI 2, which evaluated the efficacy, safety and tolerability of VUITY for the treatment of presbyopia.

Source: https://news.abbvie.com/

The FDA Approved the First Online Vision Test

The Food and Drug Administration (FDA) on August 16 approved the first online visual acuity test made by the telehealth company Visibly. This clearance will allow adults ages 22 to 40 to evaluate their vision from the convenience of their homes. The FDA approval may increase access for people who are in need of a renewed prescription for glasses or contacts but cannot travel to an appointment. However, it’s not a replacement for an in-person eye exam.

During the pandemic, a lot of people delayed elective health care that was really important,” said Yuna Rapoport, MD, MPH, a board-certified ophthalmologist at Manhattan Eye. “Overall, this remote vision test is helpful. If you really want an accurate prescription, and there’s a way to get to a doctor’s office, I would still say that that’s a better option.”

A visual acuity test is one of the most important components of an eye exam. It measures how well you can see by testing the smallest letters or images you can read clearly.

According to Visibly, the online visual test is best for “people whose vision has not changed, have recently completed a comprehensive eye exam,” and are looking to renew an expired prescription. The test is not a substitute for, nor does it provide screening or diagnosis for eye health or eye diseases, which should be performed by a licensed provider, according to the FDA.

Paul Foley, Visibly’s chief operating officer, said in a press release that the online vision test will increase at-home use and complement in-person eye care. The test takes about six minutes to complete and 90% of the prescriptions are issued within 24 hours, according to the company.

Source: https://www.govisibly.com/
AND
https://www.verywellhealth.com/

Artificial Intelligence Finds New Drug Molecules a Thousand Times Faster

The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like Covid-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 billion, or 1011, stars.

In a paper that will be presented at the International Conference on Machine Learning (ICML), MIT researchers developed a geometric deep-learning model called EquiBind that is 1,200 times faster than one of the fastest existing computational molecular docking models, QuickVina2-W, in successfully binding drug-like molecules to proteins. EquiBind is based on its predecessor, EquiDock, which specializes in binding two proteins using a technique developed by the late Octavian-Eugen Ganea, a recent MIT Computer Science and Artificial Intelligence Laboratory and Abdul Latif Jameel Clinic for Machine Learning in Health (Jameel Clinic) postdoc, who also co-authored the EquiBind paper.

Before drug development can even take place, drug researchers must find promising drug-like molecules that can bind or “dock” properly onto certain protein targets in a process known as drug discovery. After successfully docking to the protein, the binding drug, also known as the ligand, can stop a protein from functioning. If this happens to an essential protein of a bacterium, it can kill the bacterium, conferring protection to the human body.

However, the process of drug discovery can be costly both financially and computationally, with billions of dollars poured into the process and over a decade of development and testing before final approval from the Food and Drug Administration. What’s more, 90 percent of all drugs fail once they are tested in humans due to having no effects or too many side effects. One of the ways drug companies recoup the costs of these failures is by raising the prices of the drugs that are successful.

The current computational process for finding promising drug candidate molecules goes like this: most state-of-the-art computational models rely upon heavy candidate sampling coupled with methods like scoring, ranking, and fine-tuning to get the best “fitbetween the ligand and the protein.

EquiBind (cyan) predicts the ligand that could fit into a protein pocket (green). The true conformation is in pink.

Hannes Stärk, a first-year graduate student at the MIT Department of Electrical Engineering and Computer Science and lead author of the paper, likens typical ligand-to-protein binding methodologies to “trying to fit a key into a lock with a lot of keyholes. ” Typical models time-consumingly score each “fit” before choosing the best one. In contrast, EquiBind directly predicts the precise key location in a single step without prior knowledge of the protein’s target pocket, which is known as “blind docking.”

Unlike most models that require several attempts to find a favorable position for the ligand in the protein, EquiBind already has built-in geometric reasoning that helps the model learn the underlying physics of molecules and successfully generalize to make better predictions when encountering new, unseen data.

Source: https://news.mit.edu/

Memory Problems Common in Old Age Can Be Reversed

While immortality might forever be out of reach, a long, healthy retirement is the stuff dreams are made of. To that end, a recent study suggests that the kinds of memory problems common in old age can be reversed, and all it takes is some cerebrospinal fluid (CSF) harvested from the young. In mice, at least.

If this is sounding a little familiar, you might be thinking of a similar series of studies done back in the mid-2010s, which found that older mice could be generally ‘rejuvenated‘ with the blood of younger animals – both from humans and from mice. The FDA even had to warn people to stop doing it. This new study instead examined the links between memory and cerebrospinal fluid  (CSF), and the results show considerable promise, even providing a mechanism for how it works, and highlighting a potential growth factor that could mimic the results.

“We know that CSF composition changes with age, and, in fact, these changes are used routinely in the clinic to assess brain health and disease biomarkers,” Stanford University neurologist Tal Iram said. “However, we don’t know well how these changes affect the function of the cells in the aging brain.

To investigate, the researchers, led by Iram, took older mice (between 18–22 months old) and gave them light shocks on the foot, at the same time as a tone and flashing light were activated. The mice were then split into groups, and either given young mouse CSF (from animals 10 weeks old) or artificial CSF. In experiments like this, if the mice ‘freeze’ when they see the tone and light, it means they’re remembering the foot shock, and are preparing for it to happen again. In this study, three weeks after the foot shocks were conducted (which the team called “memory acquisition“), the researchers tested the mice, finding that the animals that had been given the CSF from young mice showed higher-than-average freezing rates, suggesting they had better memory. This was followed up by a battery of other experiments to test the theory, which revealed that certain genes (that are different in young-versus-old CSF) could be used to get the same response. In other words, without needing to extract someone’s brain fluid.

When we took a deeper look into gene changes that occurred in the hippocampus (a region associated with memory and aging-related cognitive decline), we found, to our surprise, a strong signature of genes that belong to oligodendrocytes,” Iram explained. “Oligodendrocytes are unique because their progenitors are still present in vast numbers in the aged brain, but they are very slow in responding to cues that promote their differentiation. We found that when they are re-exposed to young CSF, they proliferate and produce more myelin in the hippocampus.” Oligodendrocytes are particularly helpful because they produce myelin, a material that covers and insulates neuron fibers.

Obesity Drug Achieves Weight Loss of 24 kg

People with obesity lost 24 kilograms on average when they were treated with the highest dose of a new hunger-blocking drug in a large clinical trial. “It’s really exciting. The weight loss they’re showing is dramatic – it’s as much as you get with successful bariatric surgery,” says Michael Cowley at Monash University in Melbourne, Australia, who wasn’t involved in the research.

The drug used, called tirzepatide, combines synthetic mimics of two hormones known as GLP-1 and GIP that our guts naturally release after we eat to make us feel full. In a late-stage clinical trial, more than 2500 people in nine countries, who weighed 105 kilograms on average at baseline, were asked to give themselves weekly injections of tirzepatide at low, medium or high doses or a placebo for 72 weeks, without knowing which one they were taking.

The highest dose of tirzepatide was most effective, resulting in 24 kilograms of weight loss on average, equivalent to a 22.5 per cent reduction in body weight. In comparison, participants taking the placebo lost just 2 kilograms on average. The results were announced on 28 April by US pharmaceutical giant Lilly, which is developing the drug.

In June 2021, the US Food and Drug Administration approved another obesity drug called semaglutide, which contains a GLP-1 mimic on its own, without the addition of GIP. Semaglutide also promotes weight loss, but by about 15 per cent on average, suggesting that the added GIP component in tirzepatide gives an extra boost, says Cowley. Like semaglutide, tirzepatide can trigger side effects such as nausea, vomiting, diarrhoea and constipation that seem worse at higher doses. However, doctors’ experience withsemaglutide has revealed that starting patients on low doses and gradually increasing them can avoid these side effects, and the same may be true for tirzepatide, says Joseph Proietto at the University of Melbourne in Australia. One advantage of obesity drugs is that they can be discontinued if necessary, says Proietto. “The downside of bariatric surgery is that you can never ever have a normal meal again, not even for a special occasion,” he says. “With medication, you can still do this.”

Source: https://www.monash.edu/
AND
https://www.newscientist.com/

27 Proteins that May Predict Heart Disease Risk

In a new study, scientists have reported findings that show a blood test can be used to predict Cardiac Vascular Disease (CVD). The research, published in the journal Science Translational Medicine, opens the door to more individualized treatment plans for CVD. It may also improve the speed at which new CVD drugs can be identified and developed. When a new drug is developed, scientists have to make sure that it is both effective and safe. This is a rigorous process that can often take many years. While important, this significantly slows down the speed at which new drugs can be developed, and also increases the costs.

One way of increasing the speed and reducing the cost of drug development without sacrificing efficacy or safety is to use a surrogate biomarker as a predictor of risk. If a surrogate can reliably predict risk, then some stages of clinical trials can be streamlinedFinding a surrogate that can accurately predict the risk of certain diseases can also benefit patients directly. If a clinician can measure a reliable surrogate they can potentially prevent a disease before it has developed, reducing the risks to the patient.

For situations where clinical cardiovascular outcomes studies are required today, a surrogate enables unsafe or ineffective candidate drugs to be terminated early and cheaply and supports the acceleration of safe and effective drugs. Participants in the trials do not have to have events or die in order to contribute to the signal.” said Dr. Stephen Williams — Chief Medical Officer at SomaLogic, and the corresponding author of the present study. “In personalized medicine, a surrogate enables cost-effective allocation of treatments to the people who need them the most, and potentially increases the uptake of newer more effective drugs so that outcomes are improved,” said Dr. Williams.

In 2004 the United States Food and Drug Administration (FDA) published a report Trusted Source recommending that researchers identify biomarker surrogates that could help in CVD drug development and improve individualized patient care.

Successful Transplant of Porcine Heart into Adult Human

In a first-of-its-kind surgery, a 57-year-old patient with terminal heart disease received a successful transplant of a genetically-modified pig heart and is still doing well three days later. It was the only currently available option for the patient. The historic surgery was conducted by University of Maryland School of Medicine (UMSOM) faculty at the University of Maryland Medical Center (UMMC), together known as the University of Maryland Medicine.

This organ transplant demonstrated for the first time that a genetically-modified animal heart can function like a human heart without immediate rejection by the body. The patient, David Bennett, a Maryland resident, is being carefully monitored over the next days and weeks to determine whether the transplant provides lifesaving benefits. He had been deemed ineligible for a conventional heart transplant at UMMC as well as at several other leading transplant centers that reviewed his medical records.

 “It was either die or do this transplant. I want to live. I know it’s a shot in the dark, but it’s my last choice,” said Mr. Bennett, the patient, a day before the surgery was conducted. He had been hospitalized and bedridden for the past few months.  I look forward to getting out of bed after I recover.

The U.S. Food and Drug Administration granted emergency authorization for the surgery on New Year’s Eve through its expanded access (compassionate use) provision. It is used when an experimental medical product, in this case the genetically-modified pig’s heart, is the only option available for a patient faced with a serious or life-threatening medical condition. The authorization to proceed was granted in the hope of saving the patient’s life.

“This was a breakthrough surgery and brings us one step closer to solving the organ shortage crisis. There are simply not enough donor human hearts available to meet the long list of potential recipients,” said Bartley P. Griffith, MD, who surgically transplanted the pig heart into the patient. Dr. Griffith is the Thomas E. and Alice Marie Hales Distinguished Professor in Transplant Surgery at UMSOM. “We are proceeding cautiously, but we are also optimistic that this first-in-the-world surgery will provide an important new option for patients in the future.”

Considered one of the world’s foremost experts on transplanting animal organs, known as xenotransplantation, Muhammad M. Mohiuddin, MD, Professor of Surgery at UMSOM, joined the UMSOM faculty five years ago and established the Cardiac Xenotransplantation Program with Dr. Griffith. Dr. Mohiuddin serves as the program’s Scientific/Program Director and Dr. Griffith as its Clinical Director.

“This is the culmination of years of highly complicated research to hone this technique in animals with survival times that have reached beyond nine months. The FDA used our data and data on the experimental pig to authorize the transplant in an end-stage heart disease patient who had no other treatment options,” said Dr. Mohiuddin.The successful procedure provided valuable information to help the medical community improve this potentially life-saving method in future patients.

Source: https://www.medschool.umaryland.edu/

Neuralink Founder Elon Musk Says It Can ‘Safely’ Start Implanting Its Brain Chips In Humans By 2022

Elon Musk said Neuralink, a brain-interface technology company he co-founded, is hoping to start implanting its microchips in humans next year. In a live broadcast interview at The Wall Street Journal CEO Council Summit on Monday, Musk announced that Neuralink hopes to start implanting chips in 2022. Musk went on to say that they’ve been testing Neuralink in monkeys and confirmed that it’s ‘very safe and reliable. He also clarified that the Neuralink brain chip can easily be removed.

We hope to have this in our first humans – which will be people that have severe spinal cord injuries like tetraplegics, quadriplegics – next year, pending FDA approval,” Musk said.

According to him, Neuralink has substantially higher standards than what the FDA usually requires when implanting the chips. In 2019, Musk hoped to begin human trials by late 2020, but it got delayed. Earlier this year, in February, he said Neuralink would start implanting the chip in people by the end of 2021. This time, it seems Musk is overly confident that the trials will certainly kick off in 2022.

Meanwhile, another brain-interface company, Synchron, will also start its human trials in July 2022 and have already been approved by the FDA.

Source: https://www.techtimes.com/