No More Glasses for Blurry Vision

New eye drops can limit the use for reading glassesVuity has just been approved by the Food and Drug Administration (FDA), and local ophthalmologists say it can be a life-changerThe drops are meant for people dealing with Presbyopia, an age-related eye issue that causes blurry vision

We all know the reading glasses are annoying,” said Dr. Ella Faktorovich, an ophthalmologist with Pacific Vision Institute. “Within 15 minutes you can see your computer, you can see your phone so you can really improve the range of vision. I think it is huge.” She says the drops target the focusing mechanism in the eye. The drops shrink the pupils and increase focus on theeye.

There are many kinds of this medicine in trials, but this is the first to be approved,” she said. “It is pretty remarkable.” It can help people like Lovester Law, who is currently writing a book. He says he spends hours looking at a screen to write“After I read too much or write to long, I just have to close my eyes and relax,” he explained.

“If we live long enough our eyes are going to age, they are not going to be like they used to be.” People who want the drops will have to consult an eye doctor, because they are only available through a prescription. Doctors at UCSF say this breakthrough can be a catalyst for future eye treatment. The data we have shows that it really really works,” stated Julie Schallhorn, Associate Professor of ophthalmology at UCSF. “It is an exciting time to be in this field, and an exciting time for our patients.

The FDA approval of VUITY was based on data from two pivotal phase 3 clinical studies, GEMINI 1 and GEMINI 2, which evaluated the efficacy, safety and tolerability of VUITY for the treatment of presbyopia.

Source: https://news.abbvie.com/

Eye Exam Could Predict a Heart Attack

Soon, retinal scans may be able to predict heart attacks. New research has found that decreased complexity in the blood vessels at the back of the retina in the human eye is an early biomarker for myocardial infarction.

For decades, I’ve always lectured that the eye is not just the window to the soul, but the window to the brain and the window to the body as well,” said ophthalmologist Dr. Howard R. Krauss,

Cardiologist Dr. Rigved Tadwalkar, who was not involved in the research, said that the findings were interesting. “[A]lthough we have known that examination of retinal vasculature can produce insights on cardiovascular health, this study contributes to the evidence base that characteristics of the retinal vasculature can be used for individual risk prediction for myocardial infarction,” he said.

The greatest appeal,” underlined Dr. Krauss, who was also not involved in the study, “is that the photography station may be remote to the clinician, and perhaps, someday, even accessible via a smartphone.”

According to a press release, the project utilized data from the UK Biobank, which contains demographic, epidemiological, clinical, and genotyping data, as well as retinal images, for more than 500,000 individuals. Under demographic data, the data included individuals’ age, sex, smoking habits, systolic blood pressure, and body-mass index (BMI). The researchers identified about 38,000 white-British participants, whose retinas had been scanned and who later had heart attacks. The biobank provided retinal fundus images and genotyping information for these individuals.

At the back of the retina, on either side where it connects to the optic nerve, are two large systems of blood vessels, or vasculature. In a healthy individual, each resembles a tree branch, with similarly complex fractal geometry. For some people, however, this complexity is largely absent, and branching is greatly simplified. In this research, an artificial intelligence (AI) and deep learning model revealed a connection between low retinal vascular complexity and coronary artery disease.

The research was presented on June 12 at the European Society of Human Genetics.

Source: https://www.medicalnewstoday.com/

Synthetic Neurons

Synthetic neurons made of hydrogel could one day be used in sophisticated artificial tissues to repair organs such as the heart or the eyes. Hagan Bayley at the University of Oxford and his colleagues devised a synthetic material that can act in a similar way to a human neuron. Made from hydrogel, the artificial neurons are about 0.7 millimetres across ­– about 700 times wider than a human neuron, but similar to giant axons found in squid. They can also be made up to 25 millimetres long, which is similar in length to a human optic nerve running from the eye to the brain.
When a light is shone on the synthetic neuron, it activates proteins that pump hydrogen ions into the cell. These positively charged ions then move through the neuron, carrying an electrical signal. The speed of transmission was too fast to measure with the team’s equipment and is probably faster than the rate in natural neurons, says Bayley. When the positive charge reaches the tip of the neuron, it makes adenosine triphosphate (ATP) – a neurotransmitter chemicalmove from one water droplet to another. In future work, the researchers hope to make the synthetic neuron interact with another via an ATP signal, just as neurons connect with each other at synapses.
The team bundled seven of the neurons together to work in parallel as a synthetic nerve. “This allows us to send multiple signals simultaneously,” says Bayley. “They can all have very different frequencies and so it’s a very versatile signal.” The main purpose is to send different pieces of information down the same pathway, he says.

Artificial nerve cells made from biocompatible materials have been made in a lab for the first time. The innovation may one day be used in synthetic tissues to repair organs such as the heart or the eyes. 

However, the artificial neurons still have a long way to go. Unlike real neurons, there is no mechanism to recycle and create new neurotransmitters in the synthetic system. The neurons therefore only work for a few hours, says Bayley. “The more you do science, the more you find out how clever science is by virtue of evolution.” Alain Nogaret at the University of Bath in the UK says the innovation could play a major role in improving neuro-implants such as artificial retinas by the end of the decade. “The emulation of nervous activity in soft materials is a major step towards non-invasive brain-machine interfaces and solutions addressing neurodegenerative disease.”

Bayley hopes to eventually use these synthetic neurons to deliver different types of drugs simultaneously to treat wounds more quickly and precisely. “Using light, we could maybe release drug molecules in a patterned way,” he says.
Source: https://www.nature.com/ 
AND
https://www.scientiststudy.com/

Rejuvenation by Controlled Reprogramming

On 19 January 2022, co-founders Rick Klausner and Hans Bishop publicly launched an aging research initiative called Altos Labs, with $3 billion in initial investment from backers including tech investor Yuri Milner and Amazon founder Jeff Bezos. This is the latest in a recent surge of investment in ventures seeking to build anti-aging interventions on the back of basic research programs looking at epigenetic reprogramming. In December, cryptocurrency company Coinbase’s cofounder Brian Armstrong and venture capitalist Blake Byers founded NewLimit, an aging-focused biotech backed by an initial $105 million investment, with the University of California, San Francisco’s Alex Marson and Stanford’s Mark Davis as advisors.

The discovery of the Yamanaka factors’ — four transcription factors (Oct3/4, Sox2, c-Myc and Klf4) that can reprogram a differentiated somatic cell into a pluripotent embryonic-like state — earned Kyoto University researcher Shinya Yamanaka a share of the Nobel prize in 2012. The finding, described in 2006, transformed stem cell research by providing a new source of embryonic stem cell (ESC)-like cells, induced pluripotent stem cell (iPSCs), that do not require human embryos for their derivation. But in recent years, Yamanaka factors have also become the focus for another burgeoning area: aging research.

So-called partial reprogramming consists in applying Yamanaka factors to cells for long enough to roll back cellular aging and repair tissues but without returning to pluripotency. Several groups, including those headed by Stanford University’s Vittorio Sebastiano, the Salk Institute’s Juan Carlos Izpisúa Belmonte and Harvard Medical School’s David Sinclair, have shown that partial reprogramming can dramatically reverse age-related phenotypes in the eye, muscle and other tissues in cultured mammalian cells and even rodent models by countering epigenetic changes associated with aging. These results have spurred interest in translating insights from animal models into anti-aging interventions. “This is a pursuit that has now become a race,” says Daniel Ives, CEO and founder of Cambridge, UK-based Shift Bioscience.

The Yamanaka factors that can reprogram cells into their embryonic-like state are at the heart of longevity research

We’re investing in this area [because] it is one of the few interventions we know of that can restore youthful function in a diverse set of cell types,” explains Jacob Kimmel, a principal investigator at Alphabet subsidiary Calico Life Sciences in South San Francisco, California. The zeal is shared by Joan Mannick, head of R&D at Life Biosciences, who says partial reprogramming could be potentially “transformative” when it comes to treating or even preventing age-related diseases. Life Biosciences, a startup co-founded by David Sinclair, is exploring the regenerative capacity of three Yamanaka factors (Oct4, Sox2 and Klf4).

Source: https://www.nature.com/

Eye Scan Predicts Mortality Risk

Using deep learning to predictretinal age” from images of the internal surface of the back of the eye, an international team of scientists has found that the difference between the biological age of an individual’s retina and that person’s real, chronological age, is linked to their risk of death. This ‘retinal age gap’ could be used as a screening tool, the investigators suggest.

Reporting on development of their deep learning model and research results in the British Journal of Ophthalmology, first author Zhuoting Zhu, PhD, at Guangdong Academy of Medical Sciences, together with colleagues at the Centre for Eye Research Australia, Sun Yat-Sen University, and colleagues in China, Australia, and Germany, concluded that in combination with previous research, their study results add weight to the hypothesis that “… the retina plays an important role in the aging process and is sensitive to the cumulative damages of aging which increase the mortality risk.”

Estimates suggest that the global population aged 60 years and over will reach 2.1 billion in 2050, the authors noted.

Aging populations place tremendous pressure on healthcare systems.

But while the risks of illness and death increase with age, these risks vary considerably between different people of the same age, implying that ‘biological aging’ is unique to the individual and may be a better indicator of current and future health. As the authors pointed out, “Chronological age is a major risk factor for frailty, age-related morbidity and mortality. However, there is great variability in health outcomes among individuals with the same chronological age, implying that the rate of aging at an individual level is heterogeneous. Biological age rather than chronological age can better represent health status and the aging process.

Several tissue, cell, chemical, and imaging-based indicators have been developed to pick up biological aging that is out of step with chronological aging. But these techniques are fraught with ethical/privacy issues as well as often being invasive, expensive, and time consuming, the researchers noted.

Source: https://www.genengnews.com/

Eyes Provide Peek at Alzheimer’s Disease Risk

Protein deposits in retina and brain appear to parallel possible neurodegeneration, an insight that might lead to easier, quicker detection. Amyloid plaques are protein deposits that collect between brain cells, hindering function and eventually leading to neuronal death. They are considered a hallmark of Alzheimer’s disease (AD), and the focus of multiple investigations designed to reduce or prevent their formation, including the nationwide A4 study.

But amyloid deposits may also occur in the retina of the eye, often in patients clinically diagnosed with AD, suggesting similar pathologies in both organs. In a small, cross-sectional study, a team of researchers, led by scientists at University of California San Diego School of Medicine, compared tests of retinal and brain amyloids in patients from the A4 study and another study (Longitudinal Evaluation of Amyloid Risk and Neurodegeneration) assessing neurodegeneration risk in persons with low levels of amyloid.

Like the proverbial “windows to the soul,” the researchers observed that the presence of retinal spots in the eyes correlated with brain scans showing higher levels of cerebral amyloid. The finding suggests that non-invasive retinal imaging may be useful as a biomarker for detecting early-stage AD risk.

Amyloid deposits tagged by curcumin fluoresce in a retinal scan.

This was a small initial dataset from the screening visit. It involved eight patients,” said senior author Robert Rissman, PhD, professor of neurosciences at UC San Diego School of Medicine. “But these findings are encouraging because they suggest it may be possible to determine the onset, spread and morphology of AD — a preclinical diagnosis — using retinal imaging, rather than more difficult and costly brain scans. We look forward to seeing the results of additional timepoint retinal scans and the impact of solanezumab (a monoclonal antibody) on retinal imaging. Unfortunately we will need to wait to see and analyze these data when the A4 trial is completed.”

The findings published in the journal Alzheimer’s & Dementia.

https://ucsdnews.ucsd.edu/

Eye Drops Reverse Vision Loss

Eye drops that can reverse poor vision? It may sound like science fiction, but one Israeli company is aiming to bring this product to market. The drops passed their Phase 2b clinical trial earlier this month, meaning they’ve proven to improve farsightedness, the inability to see or read nearby objects, and are highly tolerable.

Although results have yet to be released, Israel-based Orasis, Pharmaceuticals, revealed details last week about the latest results of the Phase 2b study for their CSF-1 eye drops. The drops offer temporary relief reversal of farsightedness. Their effects can be felt quickly, although they only last for a few hours.

The study was based on results from 166 participants across several research centers in the U.S. and designed to test both the efficacy and safety of the product. According to Elad Kedar, CEO of Orasis, results are extremely positive.

We are very encouraged by the results,” said Kedar. “The results were great not only on the efficacy endpoints, but also on the safety and tolerability, so we are moving as quickly as possible into Phase 3.”

According to Kedar, the drops are made from chemicals already existing in eye medication for other treatments. In addition, the concentrations used in the eye drops are far lower than those already used for current eye treatment. In trials, patients improved their eyesight by three eye chart lines, which is the FDA requirement for eyesight studies, according to Kedar.

Source: https://www.orasis-pharma.com/

How To Restore Sight To The Blind

For more than a decade, researchers have been working to create artificial digital retinas that can be implanted in the eye to allow the blind to see again. Many challenges stand in the way, but researchers at Stanford University may have found the key to solving one of the most vexing: heat. The artificial retina requires a very small computer chip (nanocomputer) with many metal electrodes poking out. The electrodes first record the activity of the neurons around them to create a map of cell types. This information is then used to transmit visual data from a camera to the brain. Unfortunately, the eye produces so much data during recording that the electronics get too darn hot.

The chips required to build a high-quality artificial retina would essentially fry the human tissue they are trying to interface with,” says E.J. Chichilnisky, a professor in the Neurosurgery and Ophthalmology departments, who is on Stanford’s artificial retina team.

Members of the team, including Chichilnisky and his collaborators in Stanford’s Electrical Engineering and Computer Science departments, recently announced they have devised a way to solve that problem by significantly compressing the massive amounts of visual data that all those neurons in the eye create. They discuss their advance in a study published in the IEEE Transactions on Biomedical Circuits and Systems.

To convey visual information, neurons in the retina send electrical impulses, known as spikes, to the brain. The problem is that the digital retina needs to record and decode those spikes to understand the properties of the neurons, but that generates a lot of heat in the digitization process, even with only a few hundred electrodes used in today’s prototypes. The first true digital retina will need to have tens of thousands of such electrodes, complicating the issue further. Boris Murmann, a professor of electrical engineering on the retina project, says the team found a way to extract the same level of visual understanding using less data. By better understanding which signal samples matter and which can be ignored, the team was able to reduce the amount of data that has to be processed. It’s a bit like being at a party trying to extract a single coherent conversation amid the din of a crowded room — a few voices matter a lot, but most are noise and can be ignored.

We compress the data by being more selective, ignoring the noise and baseline samples and digitizing only the unique spikes,” Murmann says. Previously, digitization and compression were done separately, leading to a lot of extra data storage and data transfer. “Our innovation inserts compression techniques into the digitization process,” says team member Subhasish Mitra, a professor of electrical engineering and of computer science. This approach retains the most useful information and is easier to implement in hardware.

Source: https://engineering.stanford.edu/

3D Printed Metamaterials With Super Optical Properties

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is possible using conventional optical or electronic materials. The fabrication methods developed by the researchers demonstrate the potential, both present and future, of 3D printing to expand the range of geometric designs and material composites that lead to devices with novel optical properties. In one case, the researchers drew inspiration from the compound eye of a moth to create a hemispherical device that can absorb electromagnetic signals from any direction at selected wavelengths.

The geometry of a moth’s eye provides inspiration for a 3D printed antenna that absorbs specific microwave frequencies from any direction

Metamaterials extend the capabilities of conventional materials in devices by making use of geometric features arranged in repeating patterns at scales smaller than the wavelengths of energy being detected or influenced. New developments in 3D printing technology are making it possible to create many more shapes and patterns of metamaterials, and at ever smaller scales. In the study, researchers at the Nano Lab at Tufts describe a hybrid fabrication approach using 3D printing, metal coating and etching to create metamaterials with complex geometries and novel functionalities for wavelengths in the microwave range. For example, they created an array of tiny mushroom shaped structures, each holding a small patterned metal resonator at the top of a stalk. This particular arrangement permits microwaves of specific frequencies to be absorbed, depending on the chosen geometry of the “mushrooms” and their spacing. Use of such metamaterials could be valuable in applications such as sensors in medical diagnosis and as antennas in telecommunications or detectors in imaging applications.

The research has been published in the journal Microsystems & Nanoengineering (Springer Nature).

Source: https://now.tufts.edu/