Smart Contact Lenses for Cancer Diagnostics and Screening

Scientists from the Terasaki Institute for Biomedical Innovation (TIBI) have developed a contact lens that can capture and detect exosomes, nanometer-sized vesicles found in bodily secretions which have the potential for being diagnostic cancer biomarkers. The lens was designed with microchambers bound to antibodies that can capture exosomes found in tears. This antibody- conjugated signaling microchamber contact lens (ABSM-CL) can be stained for detection with nanoparticle-tagged specific antibodies for selective visualization. This offers a potential platform for cancer pre-screening and a supportive diagnostic tool that is easy, rapid, sensitive, cost-effective, and non-invasive.

Exosomes are formed within most cells and secreted into many bodily fluids, such as plasma, saliva, urine, and tears. Once thought to be the dumping grounds for unwanted materials from their cells of origin, it is now known that exosomes can transport different biomolecules between cells. It has also been shown that there is a wealth of surface proteins on exosomes – some that are common to all exosomes and others that are increased in response to cancer, viral infections, or injury. In addition, exosomes derived from tumors can strongly influence tumor regulation, progression, and metastasis.

Because of these capabilities, there has been much interest in using exosomes for cancer diagnosis and prognosis/treatment prediction. However, this has been hampered by the difficulty in isolating exosomes in sufficient quantity and purity for this purpose. Current methods involve tedious and time-consuming ultracentrifuge and density gradients, lasting at least ten hours to complete.

Source: https://terasaki.org/

Biomimetic Nanoparticles Used As Carriers Improve AntiCancer Drugs

Researchers at the University of Helsinki in collaboration with researchers from Åbo Akademi University (Finland) and Huazhong University of Science and Technology (China) have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy. This new nano-tool provides a new approach to use cell-based nanomedicines for efficient cancer chemotherapy.

Exosomes contain various molecular constituents of their cell of origin, including proteins and RNA. Now the researchers have harnessed them together with synthetic nanomaterial as carriers of anticancer drugs. The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration.

Exosomes

The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration.

This study highlights the importance of cell-based nanomedicines”, says the principal investigator and one of the corresponding authors of this study, Hélder A. Santos, Associate Professor at the Faculty of Pharmacy, University of Helsinki.

Nanoparticles-based drug delivery systems have shown promising therapeutic efficacy in cancer. To increase their targetability to tumors, nanoparticles are usually functionalized with targeted antibodies, peptides or other biomolecules. However, such targeting ligands may sometimes have a negative influence on the nanoparticle delivery owing to the enhanced immune-responses.

Biomimetic nanoparticles on the other hand combine the unique functionalities of natural biomaterials, such as cells or cell membranes, and bioengineering versatility of synthetic nanoparticles, that can be used as an efficient drug delivery platform. The developed biocompatible exosome-sheathed porous silicon-based nanomedicines for targeted cancer chemotherapy resulted in augmented in vivo anticancer drug enrichment in tumor cells. “This demonstrates the potential of the exosome-biomimetic nanoparticles to act as drug carriers to improve the anticancer drug efficacy”, Santos concludes.

Source:  https://www.helsinki.fi/

Hypothalamic Stem Cells May Reverse The Human Ageing Process

A study published in the Nature Journal by Dongsheng Cai, Albert Einstein College of Medicine, New York, talks about how stem cells, that determines how fast aging occurs in the body, can help reverse the human ageing process. Stem cells reside in Hypothalamus, a pea-sized part of the brain that contains a bundle of neurons. It is responsible for a wide array of growth, development, digestion, reproduction, and metabolism related processes in the body. As the human body starts to age, these neural stem cells in the body begins to deteriorate and accelerates the human ageing process. So, if you stop these stem cells from wearing away, you can possibly stop the human body from ageing.

The lab tests were conducted on mice, where it was observed that as the mice grew 10 months or older, the stem cells begin to deplete (earlier than the usual time for stem cells to deteriorate in mice). By the time, these mice turn two years and older, the stem cells start to disappear, causing death. However, to prove their hypothesis that stem cells deterioration truly accelerates the ageing process, scientists ‘artificially disrupted’ the stem cells in middle-aged mice, and observed that it significantly grew their rate of ageing.

Once the hypothesis that stem cells depletion leads to accelerated ageing was proved, scientists further injected the hypothalamic stem cells into the brains of older and middle-aged mice, where a sudden decrease in their ageing process was observed. This happens because the hypothalamic stem cells release molecules called microRNAs (miRNAs) which play an important role in regulation of gene expression. These miRNAs (which are bundled inside tiny particles called exosomes) released by the stem cells were then further injected into the cerebrospinal fluid of mice.

After this experiment, the ageing process significantly slowed down, in terms of tissue analysis and behavioral analysis where different changes in animals’ muscle endurance, coordination, social behavior and cognitive ability also showed signs of anti-ageing. Scientists are now looking into exploring the study further and analyze other factors related to microRNAs that might be responsible for the anti-ageing miracle!

Source: https://www.nature.com/
AND
https://in.mashable.com/