Engineering the Microbiome to Cure Disease

Residing within the human gut are trillions of bacteria and other microorganisms that can impact a variety of chronic human ailments, including obesity, type 2 diabetes, atherosclerosis, cancer, non-alcoholic fatty liver disease and inflammatory bowel disease. Numerous diseases are associated with imbalance or dysfunction in gut microbiome. Even in diseases that don’t involve the microbiome, gut microflora provide an important point of access that allows modification of many physiological systems.

Modifying to remedy, perhaps even cure these conditions, has generated substantial interest, leading to the development of live bacterial therapeutics (LBTs). One idea behind LBTs is to engineer bacterial hosts, or chassis, to produce therapeutics able to repair or restore healthy microbial function and diversity.

Existing efforts have primarily focused on using probiotic bacterial strains from the Bacteroides or Lactobacillus families or Escherichia coli that have been used for decades in the lab. However, these efforts have largely fallen short because engineered bacteria introduced into the gut generally do not survive what is fundamentally a hostile environment.

The inability to engraft or even survive in the gut requires frequent re-administration of these bacterial strains and often produces inconsistent effects or no effect at all. The phenomenon is perhaps most apparent in individuals who take probiotics, where these beneficial bacteria are unable to compete with the individual’s native microorganisms and largely disappear quickly.

The lack of engraftment severely limits the use of LBTs for chronic conditions for curative effect or to study specific functions in the gut microbiome,” said Amir Zarrinpar, MD, PhD, assistant professor of medicine at UC San Diego School of Medicine and a gastroenterologist at UC San Diego Health. “Published human trials using engineered LBTs have demonstrated safety, but still need to demonstrate reversal of disease. We believe this may be due to problems with colonization.

In a proof-of-concept study, published in the August 4, 2022, online issue of Cell , Zarrinpar and colleagues at University of California San Diego School of Medicine report overcoming that hurdle by employing native bacteria in mice as the chassis for delivering transgenes capable of inducing persistent and potentially even curative therapeutic changes in the gut and reversing disease pathologies. Using this method, the group found they can provide long-term therapy in a mouse model of type 2 diabetes.

Source: https://health.ucsd.edu/

Ultrasound to Command Bacteria to Nuke Tumors

Scientists at Caltech have genetically engineered, sound-controlled bacteria that seek and destroy cancer cells. In a new paper appearing in the journal Nature Communications, researchers from the lab of Mikhail Shapiro, professor of chemical engineering and Howard Hughes Medical Institute investigator, show how they have developed a specialized strain of the bacteria Escherichia coli (E. coli) that seeks out and infiltrates cancerous tumors when injected into a patient’s body. Once the bacteria have arrived at their destination, they can be triggered to produce anti-cancer drugs with pulses of ultrasound.

The goal of this technology is to take advantage of the ability of engineered probiotics to infiltrate tumors, while using ultrasound to activate them to release potent drugs inside the tumor,” Shapiro says.

The starting point for their work was a strain of E. coli called Nissle 1917, which is approved for medical uses in humans. After being injected into the bloodstream, these bacteria spread throughout the body. The patient’s immune system then destroys them—except for those bacteria that have colonized cancerous tumors, which offer an immunosuppressed environment.

To turn the bacteria into a useful tool for treating cancer, the team engineered them to contain two new sets of genes. One set of genes is for producing nanobodies, which are therapeutic proteins that turn off the signals a tumor uses to prevent an anti-tumor response by the immune system. The presence of these nanobodies allow the immune system to attack the tumor. The other set of genes act like a thermal switch for turning the nanobody genes on when the bacteria reaches a specific temperature.

By inserting the temperature-dependent and nanobody genes, the team was able to create strains of bacteria that only produced the tumor-suppressing nanobodies when warmed to a trigger temperature of 42–43 degrees Celsius. Since normal human body temperature is 37 degrees Celsius, these strains do not begin producing their anti-tumor nanobodies when injected into a person. Instead, they quietly grow inside the tumors until an outside source heats them to their trigger temperature.

But how do you heat bacteria that are located in one specific location, potentially deep inside the body where a tumor is growing? For this, the team used focused ultrasound (FUS). FUS is similar to the ultrasound used for imaging internal organs, or a fetus growing in the womb, but has higher intensity and is focused into a tight point. Focusing the ultrasound on one spot causes the tissue in that location to heat up, but not the tissue surrounding it; by controlling the intensity of the ultrasound, the researchers were able to raise the temperature of that tissue to a specific degree.

Source: https://www.caltech.edu/

Self-Sterilizing Microneedles

Vaccinations are the world’s frontline defence against infectious diseases yet despite decades of interventions, unsafe injection practices continue to expose billions of people to serious infection and disease.

Now, new technology from the University of South Australia is revolutionising safe vaccination practices through antibacterial, silver-loaded dissolvable microneedle patches, which not only sterilise the injection site to inhibit the growth of bacteria, but also physically dissolve after administration.

These first generation microneedles have the potential to transform the safe administration of transdermal vaccinations and drug delivery”, explains Lead researcher, Professor Krasimir Vasilev .

Injections are one of the most common health care procedures used for vaccinations and curative care around the world,” Prof Vasilev adds. “But up to 40 per cent of injections are given with improperly sterilised syringes and needles, placing millions of people at risk of contracting a range of illnesses or diseases. “Our silver-loaded microneedles have inherently potent antibacterial properties which inhibit the growth of pathogenic bacteria and reduce the chance of infection.”

The UniSA study tested the antibacterial efficacy of silver-loaded microneedles against bacteria associated with common skin infections – Golden staph, staphylococcus epidermis, escherichia coli and pseudomonas aeruginosa – and found that the silver-loaded microneedle patches created a 24-hour bacteria-free zone around the patch administration site, a feature unique to the new technology.

The silver-loaded microneedles comprise an array of 15 x 15 needles each 700 micron in length, which pierce only the top layer of the skin without reaching the underlying nerves, making them 100 per cent painless.

The microneedles are made from a safe, biocompatible and highly water-soluble polymer that completely dissolve within one minute of application, leaving behind no sharp waste.

Source: http://www.unisa.edu.au/