How to Make Quantum Computers Way More Stable
In new research, scientists have trained atoms to exhibit two forms of time at the same, well, time. While the phenomenon is not bending time away from what you’d expect looking at the clock, the matter shows behaviors from two different time modes, giving it special properties. Scientists believe this odd, double-time phenomenon could represent a new phase of matter.
Researchers from a few American universities, as well as Honeywell quantum-computing spinoff Quantinuum, collaborated on the new paper, which appeared late last month in the journal Nature. The experimental setup is made up of lasers and ytterbium atoms. Ytterbium is a metallic element whose arrangement of electrons makes it unusually suited to respond to laser treatments in a particular area of the wave spectrum. To trigger the new “dynamical topological phase,” scientists first hold ytterbium atoms in place using an electric ion field—like a tiny magnet—then bombard them with the right wavelength of laser to supercool the ytterbium. Broomfield, Colorado-based Quantinuum studies a particular quantum computer that’s made of ten ytterbium atoms in a shared system. It’s these ten atoms, held by the electric fields mentioned above, that do the computing. A group of atoms can be entangled— meaning they’re intrinsically linked into a group that acts as one piece, despite being ten separate pieces. And within that, individual atoms can be tuned to reflect different information.
- A different pattern of laser pulses could make quantum computers way more stable.New research uses a Fibonacci-inspired, non-repeating sequence to keep qubits spinning.This creates a quasicrystal effect, with support in two dimensions instead of just one.
Think of how we write numbers. In binary, the largest ten-digit number is 1111111111, and that’s just 1,023 total. But you can write ten digits in base 10, our usual counting numbers, and get 9,999,999,999. That’s accomplished by simply increasing the number of possibilities that each digit can dial to from (0, 1) all the way up to (0, 1, . . . . 8, 9). So what about a system where, theoretically, each of ten atoms could be positioned anywhere on the dial?
If that sounds amazing, you’re not wrong! There are multiple reasons why scientists and industry speculators around the world are watching the field of quantum computers with bated breath. But there’s still a very big catch, and that’s where this research comes in. The atoms in the quantum computer, known as quantum bits, or qubits, are really vulnerable, because we don’t yet have a great way to keep them in the quantum state for long. That’s because of the observer principle in quantum physics: measuring a particle in a quantum state changes, and can even destroy, the quantum state. In this case, that means unhooking all the atoms from the shared yoke of entanglement. And even worse, the “observer” can be anything happening in the complex soup of air and forces and particles all around the quantum computer.
Recent Comments