Mass Extinction

Algae and bacteria are normal parts of a healthy freshwater environment, but sometimes they can grow out of control and deplete the water of oxygen, creating ‘dead zones. This tends to happen with global warming, deforestation, and the rush of soil nutrients into waterways, which can feed microbes. All three of these factors are in play today, which is why we are probably seeing increases in toxic blooms already. Considering what’s happened in the past, that’s a disturbing sign.

According to soil, fossil, and geochemical data from the Sydney Basin, researchers think the spread of microbes in the wake of the Permian extinctionwas both a symptom of continental ecosystem collapse, and a cause of its delayed recovery.” Volcanic eruptions in the Permian first triggered an accelerated and sustained rise in greenhouse gas emissions. This caused higher global temperatures and sudden deforestation due to wildfires or drought.

Once the trees were gone, it wasn’t long before the structure of the soil began to erode, and its nutrients slipped into freshwater ecosystems. For more than three million years, Earth’s forests struggled to recover. The Sydney Basin was instead littered with lowland ecosystems that “were regularly inundated by stagnant, fresh/brackish waterbodies hosting thriving algal and bacterial populations“, the authors write. In turn, these persistent dead zones prevented the reestablishment of important carbon sinks, like peatlands, and slowed down climate and ecosystem recovery.

This major episode caused vast amounts of dust and sulfate aerosols to rise into the atmosphere, but compared to volcanic activity, the meteorite only caused a modest increase in atmospheric carbon dioxide and temperature, not a sustained one. As such, freshwater microbes only seemed to undergo a short-lived burst after the extinction event. Unfortunately, that’s very different from what occurred during the Permian extinction and what is happening today.

For instance, the researchers note that the “optimal temperature growth range” of these harmful algae in freshwater environments is 20-32 °C (68-89.6 °F). That range matches the estimated continental summer surface air temperatures for the region during the early Triassic. That range is what’s projected for mid-latitude continental summer surface air temperatures in 2100. Scientists are noticing other similarities, including an increase in forest fires and the subsequent destabilization of soils.

The other big parallel is that the increase in temperature at the end of the Permian coincided with massive increases in forest fires,” says geologist Chris Fielding, also from the University of Connecticut. “One of the things that destroyed whole ecosystems was fire, and we’re seeing that right now in places like California. One wonders what the longer-term consequences of events like that as they are becoming more and more widespread.

The good news is that this time many of the changes are in our control. The bad news is that whatever happens next is our own fault. “The end-Permian mass extinction event took four million years to recover from,” Fielding says. “That’s sobering.”

Source: https://www.nature.com/
AND
https://www.sciencealert.com/

How to Stop Allergies and Autoimmune Disease

We found this absolutely fascinating mechanism of our own bodies that stops the production of rogue antibodies that can cause either autoimmunity or allergies,” senior author, ANU Professor Carola Vinuesa, said. “It’s been known for years that neuritin has a role in the brain and in the nervous system but we found an abundance of neuritin in the immune system and its mechanism – which has never been described in biology. “We have shown it is one of our immune system’s own mechanisms to prevent autoimmunity and allergy and now we have the evidence, we can go on to harness that for treatment.”

The researchers say they set out over five years ago to bridge a knowledge gap on how the immune system works following an educated guess that neuritin might have a regulatory function in stopping allergies and autoimmune disease.

The study, published today in Cell, found neuritin can prevent the production of pathogenic antibodies.

It is an incredible discovery. We saw that in the absence of neuritin there is increased susceptibility to death from anaphylaxis, highlighting its role in the prevention of life-threatening allergies,” first author, ANU researcher Dr Paula Gonzalez Figueroa, said.

For people with allergies, when the immune system overreacts to allergens – like pollen, dust or peanut butter – it produces antibodies called Immunoglobulin E, (IgE). Allergies happen when the body produces excessive IgE in response to otherwise harmless substances, leading to the release of histamine that causes allergic reactions. “We have discovered neuritin prevents excessive formation of IgE that is typically associated with some common forms of allergy and food intolerances,” Professor Vinuesa said.

Many autoimmune diseases are caused or exacerbated by antibodies that go on to destroy our own tissues and cause autoimmune diseases like lupus and rheumatoid arthritis. “There are over 80 autoimmune diseases, in many of them we find antibodies that bind to our own tissues and attack us instead of targeting pathogens – viruses and bacteria,” Dr Paula Gonzalez-Figueroa said. “We found neuritin supresses formation of rogue plasma cells which are the cells that produce harmful antibodies.”

The researchers hope the discovery will now form the basis of new treatments.

Source: https://www.anu.edu.au/