Milking Cow Cells in a Lab for Animal-Free Dairy

In a lab in Boston, a startup has spent the last few months cultivating mammary cells from a cow—and recently succeeded in finding the perfect conditions to get those cells to produce real cow milk without an animal.  “We spend a lot of time trying to understand how the biology works in a cow, and then trying to do that,” says Sohail Gupta, CEO and cofounder of the startup, called Brown Foods, which makes a product that it calls UnReal Milk.

The startup, which operates in India and the U.S., just completed a stint at the tech accelerator Y Combinator. Alternative-dairy sales keep growing: In 2020, according to the most recent data available, sales of oat, soy, almond, and other alt-milk products made up 15% of all milk sales in the U.S., a 27% growth over the previous two years. But Brown Foods, like others in the space, recognized that plant-based milk still can’t replicate traditional dairy.

They’re not yet there in terms of taste and texture,” Gupta says. They also often have less protein and other nutrients. He argues that other new milk alternatives, including those that use precision fermentation to make animal-free dairy proteins, also can’t perfectly match dairy since they still use plant ingredients for fat and other components. There are multiple reasons to move away from traditional dairy, including the fact that cows raised for milk and meat are responsible for around 30% of the world’s emissions of methane,a potent greenhouse gas. But Gupta thinks that it makes sense to stay as close to the natural process as possible. Mammary cells “have evolved naturally over centuries to produce milk in mammals,” he says. “So these cells have the entire genetic architecture to produce the fats, the carbs, the proteins.

The company’s biochemical engineers have been studying how the cells behave, what they need nutritionally to survive, and what triggers lactation. “We’re trying to emulate nature and understand what kind of chemical signals are released in a mammal to trigger the cells to lactate and start secreting milk and get into the lactation phase,” he says. Now that they’ve shown that it can work at the small scale in the lab, they’re beginning to prepare for commercial production in larger bioreactors. The company believes that it can eventually reach price parity with conventional milk. In early calculations, it says that it could cut the greenhouse gas emissions from milk by 90%. (Unlike lab-grown meat, which requires an energy-intensive process of growing cells, producing milk just requires keeping cells alive, and has a far smaller footprint.)

Source: https://www.fastcompany.com/

Lab-grown Meats Will Help to Address Climate Change

The protein sector is at a crossroads. On the one hand, global demand for animal protein has never been higher. On the other, meat and dairy already have an outsized hoofprint on the world’s farmlands. And with the climate crisis devastating natural and agricultural resources, we know the Earth’s ecosystems cannot support an expanded traditional agricultural sectorPlant-based protein has experienced rapid growth but is dwarfed by the size of the global meat protein market.

Enter cellular agriculture. Every day brings news of new venture capital funding, adding over US$9.7 billion in global investments. Cellular agriculture encompasses a raft of technologies and approaches that manufacture food and other products normally sourced from plants and animals including: dairy proteins, egg proteins, chocolate, honey, red meat, poultry, seafood, leather, silk and ingredients including sweeteners and flavourings. Cellular agriculture entered the public eye in 2013 when tissue engineering researcher Mark Post produced the first test-tube burger. This prototype cost hundreds of thousands of dollars but today, the same patty can be made for about 10 euros, or $15. In the past two years, dozens of companies have sprung up in Singapore, Israel and California to develop consumer products almost biologically identical to those traditionally sourced from plants and animals.

A few products are already in restaurants and on supermarket shelves. The cellular agriculture dairy company Perfect Day brews dairy proteins in bioreactors using yeast, much like a craft brewer produces beer. One of the largest plant-based food companies, Impossible Foods, uses cellular derived soy heme in its signature burger. Their Whoppers are for sale at Burger King and they have just raised a further US$500 million in investment capital to scale up production. The food-tech startup Eat Just mixes chicken proteins produced through cellular agriculture with plant-based ingredients to create an analogue to a chicken nugget.

Some current cellular agriculture technologies involve animal-based inputs such as stem cells and growth media. These products are not necessarily vegetarian, and so may not be universally accepted by consumers for cultural, religious or dietary reasons. That said, there is a huge potential to reduce water consumption, energy use, land use and greenhouse gases. While there are debates as the extent of the hoped-for environmental benefits, optimists are betting on the fact that carefully designed bioreactors using renewable energy will be more sustainable than a lot of the world’s livestock systems.

https://theconversation.com/