Batteryless Device Detects Covid Droplets In the Air Around You

Researchers have developed a unique batteryless and wireless device that can detect within no time coronavirus in the air, if your surroundings contain Covid-19 particles or droplets the moment they enter the vicinity.

The device, which requires no batteries, employs a magnetostrictive clad plate composed of iron, cobalt and nickel, generating power via alternative magnetisation caused by vibration.

You must be logged in to view this content.

Iceland is Proof that COVID-19 Vaccines Work

The COVID-19 situation in Iceland is proof that vaccines work, a leading US infectious-disease expert said. Infections are at record highs, but the nation hasn’t recorded a single virus death since May.

Iceland reported 2,847 new infections over the past month, mostly from the highly infectious Delta variant and mostly in fully vaccinated people, official statistics indicated. This is the highest number of new infections in a month since the start of the pandemic, but vaccines appear to be doing their job. The vast majority of new infections are mild at worst.

Of the 1,239 Icelanders who were recorded as having COVID-19 on Sunday, 3% were in the hospital, data showed.

The country hasn’t recorded a single COVID-19 death since May 25, government statistics and Oxford University‘s Our World in Data indicated.

https://news.yahoo.com/

 

Holistic Immune Response Against Covid-19

Researchers say it’s the first real look at exactly what types of “red flags” the human body uses to enlist the help of T cells—killers the immune system sends out to destroy infected cells. Until now, COVID vaccines have focused on activating a different type of immune cell, B cells, which are responsible for creating antibodies. Developing vaccines to activate the other arm of the immune system—the T cells—could dramatically increase immunity against coronavirus, and importantly, its variants.

As reported in the journal Cell, the researchers say current vaccines might lack some important bits of viral material capable of triggering a holistic immune response in the human body.

Companies should reevaluate their vaccine designs,” says Mohsan Saeed, a virologist at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL) and co-corresponding author of the paper.

Saeed, an assistant professor of biochemistry at the School of Medicine, performed experiments on human cells infected with coronavirus. He isolated and identified those missing pieces of SARS-CoV-2 proteins inside one of the NEIDL’s Biosafety Level 3 (BSL-3) labs.

This was a big undertaking because many research techniques are difficult to adapt for high containment levels [such as BSL-3],” Saeed says. “The overall coronavirus research pipeline we’ve created at the NEIDL, and the support of our entire NEIDL team, has helped us along the way.”

Saeed got involved when computational geneticists Pardis Sabeti and Shira Weingarten-Gabbay contacted him. They hoped to identify fragments of SARS-CoV-2 that activate the immune system’s T cells.

The emergence of viral variants, an active area of research in my lab, is a major concern for vaccine development,” says Sabeti, a leader in the Broad Institute’s Infectious Disease and Microbiome Program. She is also a Harvard University professor of systems biology.

We swung into full action right away because my laboratory had [already] generated human cell lines that could be readily infected with SARS-CoV-2,” Saeed says. The group’s efforts were spearheaded by two members of the Saeed lab: Da-Yuan Chen, a postdoctoral associate, and Hasahn Conway, a lab technician.

Source:  https://www.futurity.org/

New Variant of SARS-CoV-2 Spreading Fast

A coronavirus variant called B1525 has become one of the most recent additions to the global variant watch list and has been included in the list of variants under investigation by Public Health England.

Scientists are keeping a watchful eye on this variant because it has several mutations in the gene that makes the spike protein – the part of the virus that latches onto human cells. These changes include the presence of the increasingly well-known mutation called E484K, which allows the virus to partly evade the immune system, and is found in the variants first identified in South Africa (B1351) and Brazil (P1).

While there is no information on what this means for B1525, there is growing evidence that E484K may impact how effective COVID vaccines are. But there is no suggestion so far that B1525 is more transmissible or that it leads to more severe disease.

There are other mutations in B1525 that are also noteworthy, such as Q677H. Scientists have repeatedly detected this changeat least six times in different lineages in the US, suggesting that it gives the virus an advantage, although the nature of any benefit has not been identified yet.

The B1525 variant also has several deletions – where “letters” (G, U, A and C) of the virus’s RNA are missing from its genome. These letters are also missing in B117, the variant first detected in Kent, England. Research by Ravindra Gupta, a clinical microbiologist at the University of Cambridge, found that these deletions may increase infectivity twofold in laboratory experiments.

As with many variants, B1525 appears to have emerged quite recently. The earliest example in the shared global database of coronavirus genomes, called Gisaid, dates from 15 December 2020. It was identified in a person in the UK. And like many variants, B1525 had already travelled the world before it came to global attention. A total of 204 sequences of this variant in Gisaid can be traced to 18 countries as of 20 February 2021.

Source: https://theconversation.com/