How to Construct Machines as Small as Cells

If you want to build a fully functional nanosized robot, you need to incorporate a host of capabilities, from complicated electronic circuits and photovoltaics to sensors and antennas. But just as importantly, if you want your robot to move, you need it to be able to bend.

Cornell researchers have created micron-sized shape memory actuators that enable atomically thin two-dimensional materials to fold themselves into 3D configurations. All they require is a quick jolt of voltage. And once the material is bent, it holds its shape – even after the voltage is removed. As a demonstration, the team created what is potentially the world’s smallest self-folding origami bird. And it’s not a lark.

The group’s paper, “Micrometer-Sized Electrically Programmable Shape Memory Actuators for Low-Power Microrobotics,” published in Science Robotics and was featured on the cover. The paper’s lead author is postdoctoral researcher Qingkun Liu. The project is led by Itai Cohen, professor of physics, and Paul McEuen, the John A. Newman Professor of Physical Science, both in the College of Arts and Sciences.

We humans, our defining characteristic is we’ve learned how to build complex systems and machines at human scales, and at enormous scales as well,” said McEuen. “But what we haven’t learned how to do is build machines at tiny scales. And this is a step in that basic, fundamental evolution in what humans can do, of learning how to construct machines that are as small as cells.”

McEuen and Cohen’s ongoing collaboration has so far generated a throng of nanoscale machines and components, each seemingly faster, smarter and more elegant than the last.

We want to have robots that are microscopic but have brains on board. So that means you need to have appendages that are driven by complementary metal-oxide-semiconductor (CMOS) transistors, basically a computer chip on a robot that’s 100 microns on a side,” Cohen said.

Imagine a million fabricated microscopic robots releasing from a wafer that fold themselves into shape, crawl free and go about their tasks, even assembling into more complicated structures. That’s the vision.

Source: https://news.cornell.edu/

NanoRobots Injected Into Human Bodies

In 1959, former Cornell physicist Richard Feynman delivered his famous lecture “There’s Plenty of Room at the Bottom,” in which he described the opportunity for shrinking technology, from machines to computer chips, to incredibly small sizes. Well, the bottom just got more crowded. A Cornell-led collaboration has created the first microscopic robots that incorporate semiconductor components, allowing them to be controlled – and made to walk – with standard electronic signals. These robots, roughly the size of paramecium, provide a template for building even more complex versions that utilize silicon-based intelligence, can be mass produced, and may someday travel through human tissue and blood.

The collaboration is led by Itai Cohen, professor of physics, Paul McEuen, the John A. Newman Professor of Physical Science – both in the College of Arts and Sciences – and their former postdoctoral researcher Marc Miskin, who is now an assistant professor at the University of Pennsylvania.

The walking robots are the latest iteration, and in many ways an evolution, of Cohen and McEuen’s previous nanoscale creations, from microscopic sensors to graphene-based origami machines. The new robots are about 5 microns thick (a micron is one-millionth of a meter), 40 microns wide and range from 40 to 70 microns in length. Each bot consists of a simple circuit made from silicon photovoltaics – which essentially functions as the torso and brain – and four electrochemical actuators that function as legs. As basic as the tiny machines may seem, creating the legs was an enormous feat.

In the context of the robot’s brains, there’s a sense in which we’re just taking existing semiconductor technology and making it small and releasable,” said McEuen, who co-chairs the Nanoscale Science and Microsystems Engineering (NEXT Nano) Task Force, part of the provost’s Radical Collaboration initiative, and directs the Kavli Institute at Cornell for Nanoscale Science.

But the legs did not exist before,” McEuen said. “There were no small, electrically activatable actuators that you could use. So we had to invent those and then combine them with the electronics.”

The team’s paper, “Electronically Integrated, Mass-Manufactured, Microscopic Robots,” has been published  in Nature.

Source: https://news.cornell.edu/
AND
https://thenextweb.com/