New Gene Therapy Could Stop Parkinson’s

In almost 70 years, our understanding of how Parkinson’s disease wreaks havoc on the nervous system has grown tremendously. Advances in genetic sequencing, for instance, have revealed that up to 15 percent of all cases of Parkinson’s can be attributed to inherited mutations in a person’s DNA. But large gaps in our understanding remain, including what causes the majority of cases and how to definitively test for the disease. Most astonishingly, today’s gold standard treatment for Parkinson’slevodopa medications—was discovered 68 years ago. Levodopa is effective at reducing Parkinson’s hallmark symptoms like tremors, slowness, and stiffness. The underlying theory is that Parkinson’s patients lose cells that make dopamine, and levodopa acts as a substitute.

Crucially, however, levodopa cannot stop or slow the progression of the neurodegenerative disease—merely provide some respite to the symptoms. Many researchers hope to find a more permanent cure by targeting the source and directly fixing mistakes in patients’ genes that lead to Parkinson’s in the first place. In a new study published April 19 in the journal Science Advances, one group reports having acquired the ability to overcome a (literal) barrier holding genetic intervention back.

New ways to treat Parkinson’s disease can’t come fast enough. More than 8.5 million people worldwide have the disease, and it’s the fastest-growing neurological cause of disability and death. Not only can these new findings introduce a new generation of Parkinson’s treatments, it could fundamentally change the way we treat diseases of the brain.

Our ultimate goal is to treat neurological diseases, such as Parkinson’s, early and non-invasively,” José Obeso, a neurologist at the Abarca Campal Integral Neuroscience Center in Spain and the senior author of the new research, told Spanish newspaper El País. “If all goes well, we could start testing on patients in the summer of 2024.”

Though the roots of Parkinson’s disease remain mysterious, researchers have figured out that dopamine is central to the puzzle. You may know this chemical as a pleasure hormone, but more generally it’s a key component of neurons’ messaging system. A structure in humans’ midbrain called the substantia nigra controls movement and coordination through cells that release dopamine. But in Parkinson’s patients, 80 percent or more of these cells are killed off.

(more…)