Bone-like 3D-Printed Composite Material

Nature has an extraordinary knack for producing composite materials that are simultaneously light and strong, porous and rigid – like mollusk shells or bone. But producing such materials in a lab or factory – particularly using environmentally friendly materials and processes – is extremely challenging. Researchers in the Soft Materials Laboratory of EPFL in Switzerland turned to nature for a solution. They have pioneered a 3D printable ink that contains Sporosarcina pasteurii: a bacterium which, when exposed to a urea-containing solution, triggers a mineralization process that produces calcium carbonate (CaCO3). The upshot is that the researchers can use their ink – dubbed BactoInk – to 3D-print virtually any shape, which will then gradually mineralize over the course of a few days.

3D printing is gaining increasing importance in general, but the number of materials that can be 3D printed is limited for the simple reason that inks must fulfil certain flow conditions,” explains lab head Esther Amstad. “For example, they must behave like a solid when at rest, but still be extrudable through a 3D printing nozzle – sort of like ketchup.”

Amstad explains that 3D printing inks containing small mineral particles have previously been used to meet some of these flow criteria, but that the resulting structures tend to be soft, or to shrink upon drying, leading to cracking and loss of control over the shape of the final product. “So, we came up with a simple trick: instead of printing minerals, we printed a polymeric scaffold using our BactoInk, which is then mineralized in a second, separate step. After about four days, the mineralization process triggered by the bacteria in the scaffold leads to a final product with a mineral content of over 90%.” The result is a strong and resilient bio-composite, which can be produced using a standard 3D printer and natural materials, and without the extreme temperatures often required for manufacturing ceramics. Final products no longer contain living bacteria, as they are submerged in ethanol at the end of the mineralization process.

A paper on the study was recently published in the journal Materials Today.

Source: https://actu.epfl.ch/

How To Make Airplane Parts With 99% Less Energy

A modern airplane’s fuselage is made from multiple sheets of different composite materials, like so many layers in a phyllo-dough pastry. Once these layers are stacked and molded into the shape of a fuselage, the structures are wheeled into warehouse-sized ovens and autoclaves, where the layers fuse together to form a resilient, aerodynamic shell. Now MIT engineers have developed a method to produce aerospace-grade composites without the enormous ovens and pressure vessels. The technique may help to speed up the manufacturing of airplanes and other large, high-performance composite structures, such as blades for wind turbines.

If you’re making a primary structure like a fuselage or wing, you need to build a pressure vessel, or autoclave, the size of a two- or three-story building, which itself requires time and money to pressurize,” says Brian Wardle, professor of aeronautics and astronautics at MIT. “These things are massive pieces of infrastructure. Now we can make primary structure materials without autoclave pressure, so we can get rid of all that infrastructure.”

Wardle’s co-authors on the paper are lead author and MIT postdoc Jeonyoon Lee, and Seth Kessler of Metis Design Corporation, an aerospace structural health monitoring company based in Boston. In 2015, Lee led the team, along with another member of Wardle’s lab, in creating a method to make aerospace-grade composites without requiring an oven to fuse the materials together. Instead of placing layers of material inside an oven to cure, the researchers essentially wrapped them in an ultrathin film of carbon nanotubes (CNTs). When they applied an electric current to the film, the CNTs, like a nanoscale electric blanket, quickly generated heat, causing the materials within to cure and fuse together.

With this out-of-oven, or OoO, technique, the team was able to produce composites as strong as the materials made in conventional airplane manufacturing ovens, using only 1 percent of the energy. The researchers next looked for ways to make high-performance composites without the use of large, high-pressure autoclaves — building-sized vessels that generate high enough pressures to press materials together, squeezing out any voids, or air pockets, at their interface. “There’s microscopic surface roughness on each ply of a material, and when you put two plys together, air gets trapped between the rough areas, which is the primary source of voids and weakness in a composite,” Wardle says. “An autoclave can push those voids to the edges and get rid of them.”

The researchers detail their new method in a paper published today in the journal Advanced Materials Interfaces.

Soource: http://news.mit.edu/