Glue Seals Bleeding Organs in Seconds

Inspired by the sticky substance that barnacles use to cling to rocks, MIT engineers have designed a strong, biocompatible glue that can seal injured tissues and stop bleeding. The new paste can adhere to surfaces even when they are covered with blood, and can form a tight seal within about 15 seconds of application. Such a glue could offer a much more effective way to treat traumatic injuries and to help control bleeding during surgery, the researchers say.

We are solving an adhesion problem in a challenging environment, which is this wet, dynamic environment of human tissues. At the same time, we are trying to translate this fundamental knowledge into real products that can save lives,” says Xuanhe Zhao, a professor of mechanical engineering and civil and environmental engineering at MIT and one of the senior authors of the study. Finding ways to stop bleeding is a longstanding problem that has not been adequately solved, Zhao says. Sutures are commonly used to seal wounds, but putting stitches in place is a time-consuming process that usually isn’t possible for first responders to perform during an emergency situation. Among members of the military, blood loss is the leading cause of death following a traumatic injury, and among the general population, it is the second leading cause of death following a traumatic injury.

In recent years, some materials that can halt bleeding, also called hemostatic agents, have become commercially available. Many of these consist of patches that contain clotting factors, which help blood to clot on its own. However, these require several minutes to form a seal and don’t always work on wounds that are bleeding profusely. Zhao’s lab has been working to address this problem for several years

For their new tissue glue, the researchers once again drew inspiration from the natural world. This time, they focused their attention on the barnacle, a small crustacean that attaches itself to rocks, ship hulls, and even other animals such as whales. These surfaces are wet and often dirty — conditions that make adhesion difficult. “This caught our eye,” Yuk says. “It’s very interesting because to seal bleeding tissues, you have to fight with not only wetness but also the contamination from this outcoming blood. We found that this creature living in a marine environment is doing exactly the same thing that we have to do to deal with complicated bleeding issues.” The researchers’ analysis of barnacle glue revealed that it has a unique composition. The sticky protein molecules that help barnacles attach to surfaces are suspended in an oil that repels water and any contaminants found on the surface, allowing the adhesive proteins to attach firmly to the surface.

The MIT team decided to try to mimic this glue by adapting an adhesive they had previously developed. This sticky material consists of a polymer called poly(acrylic acid) embedded with an organic compound called an NHS ester, which provides adhesion, and chitosan, a sugar that strengthens the material. The researchers froze sheets of this material, ground it into microparticles, and then suspended those particles in medical grade silicone oil.

Christoph Nabzdyk, a cardiac anesthesiologist and critical care physician at the Mayo Clinic in Rochester, Minnesota, is also a senior author of the paper, which appears today in Nature Biomedical Engineering. MIT Research Scientist Hyunwoo Yuk and postdoc Jingjing Wu are the lead authors of the study.

Source: https://news.mit.edu/

Gene-Editing: From Pigs To Humans

If any swine is fit to be an organ donor for people, then the dozens of pigs snuffling around Qihan Bio’s facility in Hangzhou, China, may be the best candidates so far. The Chinese company and its U.S. collaborators reported today that they have used the genome editor CRISPR to create the most extensively genetically engineered pigs to date—animals whose tissues, the researchers say, finally combine all the features necessary for a safe and successful transplant into humans.

This is the first prototype,” says Luhan Yang, a geneticist at Qihan Bio. In a preprint published today on bioRxiv, Qihan researchers and collaborators, including Cambridge, Massachusetts–based eGenesis—which Yang co-founded with Harvard University geneticist George Church—described the new generation of animals and various tests on their cells; the researchers have already begun to transplant the pigs’ organs into nonhuman primates, a key step toward human trials.

Qihan and eGenesis aren’t alone in their quest. Several academic and commercial research groups are racing to make up a shortage of life-saving human organs with the comparably sized hearts, kidneys, and livers of pigs. For these cross-species transplants, also known as xenotransplants, the pig’s genome must be re-engineered so that its organs will get along with the new host body. Pigs produce species-specific molecules that set off the human immune system, prompting rejection. Their tissue can also cause abnormal clotting and bleeding when it interacts with human blood. And the pig genome is littered with DNA sequences from viruses that infected the animals long ago and slipped genes into their chromosomes. These sequences, known as porcine endogenous retroviruses (PERVs), have been shown to produce potentially infectious viral particles, though their risk to humans is unclear.

Source: https://www.sciencemag.org/