A Single Drop of Blood Can Reveal Stress Hormones

A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood.

Cortisol and other stress hormones regulate many aspects of our physical and mental health, including sleep quality. High levels of cortisol can result in poor sleep, which increases stress that can contribute to panic attacks, heart attacks and other ailments.

Currently, measuring cortisol takes costly and cumbersome laboratory setups, so the Rutgers-led team looked for a way to monitor its natural fluctuations in daily life and provide patients with feedback that allows them to receive the right treatment at the right time.

The researchers used the same technologies used to fabricate computer chips to build sensors thinner than a human hair that can detect biomolecules at low levels. They validated the miniaturized device’s performance on 65 blood samples from patients with rheumatoid arthritis.

The use of nanosensors allowed us to detect cortisol molecules directly without the need for any other molecules or particles to act as labels,” said lead author Reza Mahmoodi, a postdoctoral scholar in the Department of Electrical and Computer Engineering at Rutgers University-New Brunswick.

With technologies like the team’s new microchip, patients can monitor their hormone levels and better manage chronic inflammation, stress and other conditions at a lower cost, said senior author Mehdi Javanmard, an associate professor in RutgersDepartment of Electrical and Computer Engineering.

Our new sensor produces an accurate and reliable response that allows a continuous readout of cortisol levels for real-time analysis,” he added. “It has great potential to be adapted to non-invasive cortisol measurement in other fluids such as saliva and urine. The fact that molecular labels are not required eliminates the need for large bulky instruments like optical microscopes and plate readers, making the readout instrumentation something you can measure ultimately in a small pocket-sized box or even fit onto a wristband one day.”

The study included Rutgers co-author Pengfei Xie, a Ph.D. student, and researchers from the University of Minnesota and University of Pennsylvania. The research was funded by the DARPA ElectRX program.

The study appears in the journal Science Advances.

Source: https://www.rutgers.edu/

Molecular ‘Switch’ Reverses Chronic Inflammation And Aging

Chronic inflammation, which results when old age, stress or environmental toxins keep the body’s immune system in overdrive, can contribute to a variety of devastating diseases, from Alzheimer’s and Parkinson’s to diabetes and cancer.

Now, scientists at the University of California, Berkeley, have identified a molecularswitch” that controls the immune machinery responsible for chronic inflammation in the body. The finding, which appears online  in the journal Cell Metabolism, could lead to new ways to halt or even reverse many of these age-related conditions.

My lab is very interested in understanding the reversibility of aging,” said senior author Danica Chen, associate professor of metabolic biology, nutritional sciences and toxicology at UC Berkeley. “In the past, we showed that aged stem cells can be rejuvenated. Now, we are asking: to what extent can aging be reversed? And we are doing that by looking at physiological conditions, like inflammation and insulin resistance, that have been associated with aging-related degeneration and diseases.”

In the study, Chen and her team show that a bulky collection of immune proteins called the NLRP3 inflammasome — responsible for sensing potential threats to the body and launching an inflammation response — can be essentially switched off by removing a small bit of molecular matter in a process called deacetylation.

Overactivation of the NLRP3 inflammasome has been linked to a variety of chronic conditions, including multiple sclerosis, cancer, diabetes and dementia. Chen’s results suggest that drugs targeted toward deacetylating, or switching off, this NLRP3 inflammasome might help prevent or treat these conditions and possibly age-related degeneration in general.

This acetylation can serve as a switch,” Chen said. “So, when it is acetylated, this inflammasome is on. When it is deacetylated, the inflammasome is off.”

Source: https://news.berkeley.edu/

New Vaccine Brings Revolution In Preventing Chronic Inflammation Related To 60% Of Death

As we learn more and more about health, well-being, and all the factors that affect both, inflammation has become a major player in the conversation. Linked with symptoms ranging from bloating and acne to more serious things like depression and cancer, chronic inflammation, researchers believe, could continue to increase in prevalence. But a new vaccine offers hope for the future of preventing inflammatory diseases.

The vaccine, which is currently for animals, was developed by Institut Cochin in France. Researchers already knew about a connection between inflammation, gut health, and the protein flagellin: Flagellin essentially allows into the rest of the body, resulting in inflammation, and while antibodies exist within that intestinal barrier to help prevent leaky gut, it’s harder to keep all the bacteria contained if your microbiome is out of balance. Researchers hypothesized they could boost the flagellin antibodies within the gut, thereby keeping harmful bacteria from spreading into the body. They administered a flagellin vaccine to mice by injecting it directly into their intestinal lining, spurring the production of the flagellin-fighting antibodies. Chronic inflammation is thought to be related to 60% of deaths worldwide, due to its connection to stroke, diabetes, cancer, and more. This vaccine could be a game-changer if scientists are able to replicate the findings in a version for humans, which researcher Benoît Chassaing says they’re working on.

This vaccine strategy can be envisaged in humans, because such abnormalities of the microbiota have been observed in patients with inflammatory and metabolic diseases. With this in mind, we are currently working on a means of locally administering flagellin to the intestinal mucosa,” he says.

They’re also looking into testing the vaccine on animals that already have chronic inflammatory diseases, to see if it can be used for inflammatory treatment, as opposed to just prevention. But until such a vaccine for humans exists, there are lots of ways to combat inflammation naturally. If you’re still looking for more information, check out the Ultimate Guide to Inflammation class.. When inflammation was induced, the unvaccinated mice became obese, and the vaccinated mice did not. Immunization quelled intestinal inflammation by lowering levels of the flagellin-expressing bacteria in their microbiota, intestines, and intestinal lining.

Source: https://www.mindbodygreen.com/